A Successful Implementation with the Smart Grid: Demand Response Resources

Contribution to the Panel: “Reliability and Smart Grid: Public Good or Commodity”

Anupama Kowli Student Member, IEEE, Matias Negrete-Pincetic Student Member, IEEE, and George Gross Fellow, IEEE

Abstract—The effective harnessing of control, communication and computer technologies in the operation of the power system - the key notion behind the Smart Grid concept - can markedly impact the system reliability. The appropriate utilization of intelligent line switching, demand response resources (DRRs), FACTS devices and PMUs is key in the smart grid deployment to bring about improvements in the reliability of the power system. While the Smart Grid can support the provision of differentiated levels of reliability to different customers, the maintenance of system integrity requires that a certain minimum level of reliability be kept throughout the system. We view the provision to meet this reliability requirement as a public good. In this paper, we consider the long-term impacts of DRRs - a successful application of the smart grid - and evaluate their impacts on system reliability. We use a simulation engine to study these impacts under different scenarios. We demonstrate the tangible reliability benefits of DRR applications in terms of reduced number of loss of load events as a result of voluntary load curtailments.

Index Terms—Electricity Markets, Demand Response resources, Reliability, Smart Grid.

I. INTRODUCTION

POWER systems are experimenting deep and exciting changes. The key notion behind the Smart Grid concept [1] – the effective harnessing of control, communication and computer technologies in the operation of the power systems – is creating several possibilities and challenges all over the electricity industry. In the planning arena, the concept of resilient power systems in which the system can recover by itself from contingencies, contrary to a preventive viewpoint, emerges as one of such deep changes. In the distribution side, the use of decentralized control is going to allow faster response to contingencies or disturbances in the system [2]. Advanced smart metering and the possibility of more price sensitive demand will deeply impact the way to design and operate the markets [3], [4]. The appropriate use of intelligent line switching, demand response resources (DRRs), FACTS devices and PMUs can help power system operators to improve the reliability of the power system [4] - [7]. However, the use of more information technologies also creates new security concerns due to the possibility of cyber attacks [8].

In this paper, we focus on the reliability impacts Smart Grid can have. While the smart grid can support the provision of differentiated levels of reliability to different customers, the maintenance of system integrity requires that a certain minimum level of reliability be kept throughout the system. We view the provision to meet this reliability requirement as a public good. In particular, we present how Demand Response Resources can provide tangible reliability benefits for this public good side of system reliability.

This paper contains three additional sections. We devote section II to the public good/commodity discussion of reliability. We illustrate impacts of DRRs in system reliability in section III. We present concluding remarks and future directions for research in section IV.

II. SMART GRID AND RELIABILITY

Inherent network characteristics of power systems and technical considerations have created the conditions to conceptualize power system reliability as a public good in which everyone must consume the same level [9]. Such reliability level is in general quantified through reliability metrics such the widely used 1 interruption every 10 years criterion. In a given neighborhood, all the customers are connected to the same feeders and wires, making it impossible to provide differentiated levels of reliability. Hence, the reliability criterion is applied to the whole system, and all the users end up consuming the same quantity. The system must be planned and operated in such a way to achieve the specified reliability standard. For example, resource adequacy markets such as the Reliability Pricing Model of PJM or the Forward Capacity Market of New England ISO use the 1 interruption every 10 years as the system reliability criterion target.

The implementation of the Smart Grid opens the possibility of having multiple reliability levels [10]. In a market environment, the technical possibility of having differentiated reliability level will require, among other changes, the creation of differentiated electricity prices according to the reliability level.1 Metering and data management are key infrastructure requirements to achieve differentiated price schemes [11]. Customers that would need a stricter reliability criterion – say 1 interruption every 20 years – should pay higher prices than customers under a reliability criterion that is comparatively less strict – say 1 interruption every 10 year criterion.

The possibility of having an additional dimension of commodity for the provision of reliability will entail changes in

1The differentiated prices for different levels of reliability are similar, in nature, to the use of highways; we have public highways with an adequate level of functionality and private highways for people willing to pay for them.
power system planning and operations. Multi-level reliability assessments [10] emerge as a potential upgrade in this setting. Electricity markets in all their realizations, i.e., the energy markets, the capacity markets and the markets for ancillary services, should be redesigned to capture the new commodity dimension of reliability.

Notwithstanding the new commodity dimension of reliability, the importance of electricity in society and the centralized and structural characteristics of the system still require a minimum reliability level. Indeed, the provision of differentiated levels of reliability is sustained in such minimum reliability level. For example, a failure in the bulk transmission system impacts everyone connected to the grid. We continue to view the provision of such minimum reliability level of the system as a public good. Consequently, in the new Smart Grid environment both the public good and the commodity viewpoints of reliability must coexist.

III. IMPACTS OF DRRs ON RELIABILITY

In the public good provision of reliability, we focus our attention on the use of DRRs to satisfy the minimum reliability level. DRRs are demand-side players with the capability of curtailing their loads when provided with the appropriate economic incentives. DRRs provide load curtailment services to the system operator and voluntarily modify their load consumption to provide these services [4], [12]. It is clear that DRRs are private goods having characteristics of excludable and rival goods. The use of DRRs is determined by the willingness of consumers for curtail loads; the benefits associated with the DRR in terms of payments are exclusively for the seller of DRR, hence excludable from other players. Similarly, once a DRR is sold, it cannot be sold by anyone else; hence it is a rival good [13]. However, as with other public goods, DRRs are used for the “provision” of the public-good side of reliability. In this section we present several numerical illustration of the impact DRRs can have on the public good dimension of reliability.

A. SIMULATING DRRs IMPACTS

We demonstrate the peak-shaving capabilities of DRRs to provide tangible reliability benefits to the system. We use the simulation approach proposed in [12] to set of studies to quantify these reliability benefits. We limit our analysis to a single year to discuss the results in depth.

We use a realistic-sized test system in all studies discussed here. We use the load shapes from the Midwest ISO system [14]. The aggregate average hourly load for this summer peaking system is 70 GW, and the annual peak load is 117 GW. The supply-side resource mix capacity composition is summarized in Table I. We explicitly consider the maintenance schedule of the resource mix. We specify the total capacity of the DRRs in the system as a fraction of the annual peak load of the system. The load payback effects due to the DRR curtailments by player b are specified in terms of the DRR curtailment recovery factor (DCRF) χ^R. The independent grid operator (IGO) operates the electricity markets and the transmission grid. The loads of individual buyers are a pre-specified fraction of the system load, and the buyers’ demand bids are inelastic to electricity prices. The IGO is responsible for meeting the load requirements of all the buyers using offers from generators as well as DRRs. The DRRs are eligible to offer load curtailments from 8 a.m. to 6 p.m. for each weekday and the load recovery is restricted to the off-peak (night) hours. Further details on the test system are provided in [12].

To study the effects of DRR integration, we simulate multiple DRR scenarios with varying degrees of load payback effects and DRR penetration. We use as a reference the scenario R with no DRRs in the system, and we use the variable effects from this scenario as benchmarks to assess the impacts of the DRRs on the system.

B. IMPACTS OF DRRs IN CAPACITY MARGINS

We start with a comparison of the reference scenario with the DRR scenario $D\gamma$ having 5.6 GW of DRR capacity which is approximately 5% of the peak load. We simulate the DRR scenario for two possibilities of load payback — no recovery of DRR curtailments, i.e. $\chi^R = 0$ and recovery of 70% of the load curtailed by DRRs, i.e. $\chi^R = 0.7$. We first examine the impacts of DRRs on the system load. For each scenario, we obtain the range and the average values of the net system load cleared in the hourly markets and present the results in Table II. The comparison between the hourly net loads for the three scenarios provides a good illustration of the capability of the DRRs to reduce the load during the few critical hours in the study period when the load is high. The reduction in the system net load is observed in approximately 25% of the hours in the year. We illustrate the reduced loading of the system during the peak hours by using the corresponding portion of the annual LDCs in Fig. 1. The reduction in the peak load from 117.658 GW to 112.720 GW improves the capacity margin for the system from 14.739 % to 19.766 %. When the load payback effects are considered, we observe increases in the system load during the off-peak hours, which impacts the base load values.

To study the impacts of DRR penetration, we simulate the DRR scenarios with varying capacity of DRRs. We focus on the impacts of DRRs on the utilization of the system resources.
For simplicity, we assume that $\chi^b = 0$. We use Fig. 2 to illustrate the impacts of increasing DRR penetration on the capacity margin and the aggregate annual congestion rents. As the DRR penetration deepens, we observe higher reductions in the peak loads, thereby resulting in further improvements in the capacity margin of the system. The DRR load curtailments provide congestion relief and hence, increasing deployment of the DRRs in the high penetration scenarios results in significant reductions in the congestion rents. The simulation results also indicate a decrease in the electricity payments and CO$_2$ emissions with the increasing DRR penetration. A more detailed discussion of these results is available in [12].

C. DRRs as an alternative to generation additions

Next, we investigate the impacts of DRRs on the need for additional generation. We simulate scenarios \mathbb{R} and \mathbb{D}_3 assuming 5% growth in the load demand and with no modifications in the resource mix. We compute the hourly net loads for both scenarios and compare it with the forecasted loads of the system. The simulation studies indicate that there is a shortage of available generation for 2% of all hours in the reference scenario \mathbb{R} without DRRs, which results in mandatory load curtailments at some nodes. However, in DRR scenario \mathbb{D}_3, the voluntary load curtailments by the DRRs reduce the loading on the system during the peak hours and hence, there is no shortage of available generation. The illustration in Fig. 3 clearly indicates the shortfall of available generation in the top 2% hours for the scenario \mathbb{R}. We observe that to prevent this generation shortage, an additional peaking generation capability of approximately 1 GW is needed. As seen from the scenario \mathbb{D}_3 simulation, the effective use of DRRs does indeed defer the need for this additional generation. We conclude that DRR curtailments bring about a tangible reduction in the total loading of the generation units and help avoid loss of load situations that may arise due to the forced outages of generators.

D. DRRs as an alternative to transmission upgrades

The last set of simulation studies investigates the interplay between the transmission congestion and effective deployment of the DRRs. For our investigations, we use scenario \mathbb{R} and scenario \mathbb{D}_3 with $\chi^b = 0$ and each scenario is simulated with four different configurations of the transmission grid: the existing grid, the existing grid with line ℓ_a upgraded, the existing grid with lines ℓ_a and ℓ_b upgraded, and, the existing grid with lines ℓ_a, ℓ_b and ℓ_c upgraded. We compute the annual congestion rents for the two scenarios – with and without DRRs – for each system configuration and present the same in Fig. 4. As expected, an improvement in the transfer capability due to the line upgrade(s) decreases the congestion rents for both scenarios – with and without DRRs. A comparison of the annual congestion rents for all the case studies provides a significant finding – the lowest congestion rents for the reference scenario \mathbb{R} without DRRs – 406 million for the system with 3 line upgrades – are higher than the congestion rents in DRR scenario \mathbb{D}_3 – 387 million on the existing transmission system. Thus, we conclude that effective utilization of the DRRs may lead to more reduction in the congestion rents than undertaking the capital intensive projects.
such as transmission line upgrades. This finding also implies that the DRR integration into the power system may defer the need for additional transmission.

IV. CONCLUDING REMARKS

In this paper, we discuss the new scenario created by the Smart Grid in which reliability may have both public and private good characteristics. We explore DRRs as a successful implementation with the Smart Grid. We present several numerical illustrations showing tangible reliability benefits associated with DRRs. We demonstrate how DRRs contribute towards provision of the public good dimension of reliability. Our findings show how DRRs can improve capacity margins and provide attractive alternatives to generation resource additions and transmission line upgrades. An exciting future research topic in this area is the design of appropriate products and markets to be able to capture the new physical/technological setting created by the Smart Grid.

REFERENCES

Anupama Kowli received the B.E. in Electrical Engineering from the University of Mumbai in India and a M.S. degree in Electrical and Computer Engineering from the University of Illinois at Urbana-Champaign. Currently, she is pursuing a Ph.D. in Electrical and Computer Engineering at the University of Illinois, at Urbana-Champaign. She was a summer intern at KEMA Inc. Her areas of interest include power systems planning and operations, electricity market economics and power system simulation.

Matias Negrete-Pincetic received the B.S. degree in Electrical Engineering and the M.S. degree in Physics from the Pontifical Catholic University of Chile and the M.S. degree in Physics from the University of Illinois at Urbana-Champaign. Currently, he is a Ph.D. Candidate at the Department of Electrical and Computer Engineering at the University of Illinois at Urbana-Champaign. He was a summer intern in the Business and Architecture Technology department at New England ISO. His current research interests include power system planning and capacity market design.

George Gross is Professor of Electrical and Computer Engineering and Professor, Institute of Government and Public Affairs, at the University of Illinois at Urbana-Champaign. His current research and teaching activities are in the areas of power system analysis, planning, economics and operations and utility regulatory policy and industry restructuring. His undergraduate work was completed at McGill University, and he earned his graduate degrees from the University of California, Berkeley. He was previously employed by Pacific Gas and Electric Company in various technical, policy and management positions.