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ABSTRACT

The glob&awareness of the impacts of climate change is a key driver glutbkpace
of development of renewable energy technologies. The concentrated solarGsiht (
technology has emerged as a promising approach to harness solar engrgeveral
implementations under way around the worldhlike PV and wind resources, @SP
allows the deployment of the thermal energy storageS( which provides theCSP
operator the flexibility to produce electricity beyond the surisgunset periods. For a
system withintegratedCSPs at distinct locationen its footprint the effective utilization of
the TES devices requires a scheduler to optimize the value of the t6@Rproduced
energyfor the systemHowever theassessment of impaaté CSPresources gses major
challenges due to the inherent uncertainty, variability and intermittendyesft normal
irradiation ONI), which markedly influence the times and the quantities tdtal CSP
energy productionThe geographic correlations among the rasitee DNI and itsintrinsic
seasonality further complicate the effective quantification of the +sitdtiCSP variable
effects inpower systemsto which they are integrate@hus, the assessment@&Fs sets
up an acute need for a practical simula@@proachto emulate operations of the systems
with integratedCSPresourcesand toevaluatetheir variable impacts. Suchnaapproach
must explicitly represent the uncertainty, variability and intermittency o€ 8Rresouces,
the geographic correlatiammong then, as well as the flexibility imparted ByESdevices.
The approaclalso needs to take into account the seasonality @ 8#resources antheir
interactions with the load seasonal changes.

To address these needse construct the mulsite CSP power output model and

formulate theassociatedscheduling problemSP undersome specificTES operational



objectivein a system with integrateahulti-site CSPresourcesThe power outpstof the
multi-site CSPs dependiot onlyon the specific details of théSPconfiguratiors andthe
operational scheduléut also orthe nature othe solar energy inputThe identification of
distinct multisite DNI data in a given season is a key step to obtain the analytic
representation ohe multisite CSPpower outputs. We ussatisticalclustering techniques

to classify thedistinct data intovarious groups referred to as regimasand utilize the
power output model to probabilistically characterize the nsitki CSP power outputs
baed on thadentified DNI regimes. We make detailed use of the conditional probability
concepts to incorporate the probabilistic model of the rsutiCSP power outputs into

the extended production simulation tool.

The major interest in the use of the extended production simulagjoproachis to
guantify the impacts of the integration GSPresources into the system on the variable
effects over longeterm periodsWe modify theWestern Electricity Coordinating Council
(WEQC) 240-bus modelto constructa test systenbasedon WECCgeographic footprit
using WECC historical load, DNI and system marginal pricgata. We present some
representative simulation results to provide insights into the 1sitdtCSPimpacts on the
systems over longderm periods and to illustrate the effectiveness of the extended
simulation approach.

The primary contribution of this thesis is to propose an approach cagajplantifying
the variable effects of the mukite CSPresources on the system into which they are
integrated, with explicitepreserdtion ofthe unertainty, variability and intenittency of

the solar resoursas well agheirinteractions with the loads and other resources
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1. INTRODUCTION

In thisthesis, we develop a probabilistic simulation approackystems with integrate
concentrated solar planCEP resources withthermal energy storag@ES to evaluate the
impacts of the mulisite CSPintegration on the system variable effeoter longefterm
periods In this introductory chapter, we presehé background and motivation for this
research, briefly review the current state of the art, provide an overview of our proposed

methodology and outline the rest chapters of the thesis.

1.1. Background and Motivation

The growing concern over the ingia of global climate change has resulted in
legislation in numerous jurisdictions tencouragethe implementation of renewable
resources for electricity supply so as to reduce fossil fuel energy dependence and to curtail
greenhouse gas emissions. Foranse, more than half tHé.S. states have set ambitious
goals through theiRenewable Portfolio Standardspecifying the percentage of the
electricity that needs to be served by renewable resources by specific target]dadtes [
European Uniorhasalso established binding targets with the gtaderive 20 % of the
total European Uniorenergy consumptiofrom renewablesnergysources by 202(2]. In
the solar energy technology arer@$P technology has recently experienced a steady
growth, with nearly 11GW of CSP projects under development around the woff [
Typically, aCSPutilizes mirrors with tracking systems to focdisect normal irradiation
(DNI) to collect solar energy for conversion into thermal energy, which is used in a steam

turbine orheat engine that drives a generator to produce electrdjityfrabolic trough



Solar tower, Dish stirling and Fresnel reflectorare the four common forms of tH&SP
technology fi]. Compared tdhe other two forms, parabolic trough and solar toW&Hs

are widely commercially deployed around the wof]. The parabolic troughCSP
technology uses parabolic mirrors to concentrate solar rays onto the receivers positioned
along the mirrorsoé focal |l ine andiflahe sol ar
mirrors with dualaxis trackersi to focusDNI onto a central receive5]. Unlike PV
resourcesCSPcan make use only of tHeNI i the direct component of the irradiation.
Furthermore, a salient characteristic of @@&Ptechnologyis the deployment dhe TESto

store a fraction of the thermal energy for latenversion Since the utilization ofES

allows CSPto produce electricity beyond the sun#isesunset periods and to ensure that

the power outputs meet the forecasts with a better fidelityTE&is a definite advantage

of CSPover the nordispatchabld”V resources. The added flexibility afforded by FeS

is a key reason for the growing interestG8P [6], with the global installed capacity of
around 3,500MW [3] by the end of 201,3shown inFig. 1.1 Spain continued to lead the
world with the 2,304MW total installedCSPcapacity TheU.S.also installed 410MW of

CSPin 2013, increasing its totaCSP capacity by more than 8@6. Other countries
involved in wide commercialization d€SP resources include Chan South Africa and
Australia Therefore, the implementation GSFs triggers an acute need for a simulation

tool to efficiently quantify over longesterm periodsthe variable effects of the power

systens with integratedCSPresouces sited at distinct locations.
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Figure1.1: 20101 2014globalcumulativeCSPcapacityby quarter3]

However, the randomness in tl&SP resources brings major challenges into the
effective assessment of the influences of the integrated-si@CSFs on the systesidue
to the inherent uncertain, timerying nature of théocationalDNIs. In Fig. 12, we give
the plots of the daily measur&NI data at Las VegadlV, for severdifferentdays of year
2013. Clearly, the dail{pNI shapes on May 1 and yul have gradual changes, whereas
the shapes on Jahand Febl changeapidly from minute to minutaNVe show in Fig. 1.3
the variations in sunrise, sunset times anddimatiors of the sunriséo-sunset pericslat
lvanpah Dry LakeCA. We note that theariations exist throughout the whole yeBased
on theplot in Fig. 14 displayingthe daily measuredDNI data atLas Vegas, NY and
Aurora, CQ on April 7, 2014 we alsonotice thestronglocational diversityof daily DNI.
As a result, hesecharacteristicof DNI affect markedly the times and the quantities of

energy produced by tHeShs.
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Figure1.2: LasVegasdaily DNI measurements for seven different dafygear 20137]
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Figure1.4: LasVegasand Auroradaily DNI measurements on April 7, 2013]

The CSPresources can output electricity whenever either solar energy or thermal energy
from TESis available The efficient utilization of th& ESrequires a scheduler to optimize
the contribution of th&€Sks to displace expensive and polluting conventional generation.
Thus, the extent to which the aggregate8P energy production and the loads are
correlated is an important consideration in the evaluation of the -gi@tiCSP
contribution to the power systemdn contrast to the highly uncertain, variable and
intermittentCSPpower outputs, the loads follow walkfined diurnal and weekly patterns
with higher demand during the weekdays than the weekends and with peaks, typically, at
similar periods of the weekdays and lower values at nights. We provide irbRigeIplots
of the hourly power outputs of tHeSFPs located inCAISOregion in comparison with the
CAISO hourly loads 9] for March 1016, 2014.The plots clearly indicate the weakly
correlated behavior of th€SP outputs with the loads, whictonsiderab} impacts the
multi-site CSPcontributionto the powe systemwhere theCSFs are integratedue to the

seasonality of th®NI and the loadssuch weak correlations are also strongly seasonally



dependent, which further complicates the assessment @SReontribution Thus the
proposedapproach must bable to capture the timearying nature of th€ SPresources so

as to effectively quantify the variable effects of systems into which they are integrated.
Such a tool needs to explicitly represent the uncertainty sources in loads and resources, as
well asthe interactions among them. It also needs to take into account the seasonality of
the loads andCSPresources, in addition to thEESoperation schedulingnd its impacts

on CSP outputs In this thesis, w address those needs with the extension of the
conventional probabilistic simulation approach to construct a practical and versatile

simulation tool to emulate the operations of the power systems with intedz&Ed

resources.
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Figure 15: Plots of the chronologic&AISOhourly loads an€CSPpower outputs for the

March 1G 16, 2014[9]



1.2. Survey of the State of the Art

The integration of theCSP resources into the electric griths becomencreasingly
important inrecentyears with deepeningCSP resource penetratiorHere, we briefly
review the literature related to the issues we are dealing with in this. thesis

The modeling of th®NI and theCSPare the two key issu¢hat needo be addressed
in the studies of systems with integrat@8Presouces. The modedcomplexity depends
on the nature of the study and the level of detail of the phenowemnant tocapture Due
to the time dependence of the eéargand su® snovementsithe temporal effects are
always taken into account in tH2NI modeling. For instance, thectual DNI value is
computedbased on the cleaky DNI valug which isdetermined by the time of the year
and the atmospheric attenuation factehich is approximed as a nonlinear function of
the geographical informatidi0]. For systems with dispers€&SPresources over a broad
area, the geographical correlations amondtNéalso needs to be consideréuthe solar
irradiation forecasting area, some computationally demanding methods are repgtigd
[12] for PV resources. But those methods are only useful for ¢t operational
decision andreinappropriate for longeterm planning

Researchrs have developed multiple models to emulate the behaviQSrfesources.
Many of those techniques, described i8][114], [15], [16], focus on energy analysis and
consider only the energy production from @8Presources withouthe evaluation of lheir
impacts on the system into which they are integrafdthough he methods in 17]
probabilisticallyrepresenthe load, the controllable resources and riéreewable energy
resourcesand the interplaymong the resources and lsathe utilization of Monte Carlo

methods is computationally demandingto simulate larger power systemsand



modifications are required to simulate the operations of the systems with integQ&fed
resourcesSeveral comprehensive studies have also studesompacts of the windndPV
resource integration for severtl.S. systems 18], based onchronological production
simulatiors wherethe system operations are simulated step by step

As a result, the electric power industry recognizes the need for methods to
effectively assess the impacts of uncontrollable renewable energy sources [19] and is

intensified by the deepening renewable energy penetration.

1.3.Scopeand Contributions of the Thesis

Little work has been done to construct a probabilistrwkation approach to emulate the
realistic power system operations with integrated rsitti CSPresources, particularly over
longerterm periods. The major challenge is to incorporate the additional uncertain and
time-varying effects ofCSFs into theapproach 20], [21]. Such an approach needstae
into account the seasonality of loads &@Presources, in addition to thEESoperation
schedulingandits impacts onCSPoutputs. It also needs to explicitly represent interactions
among loads and coemtional controllable unitdVe address those needs to develop such
an approach in this thesis.

We extendthe conventional probabilistic simulation tool to construct a practical and
versatile approach to effectively assess, over lotegen periods, the veable effects of
systems with integrate@SFs at different sites. We develop a mugite CSPpower output
model and formulate @ESscheduling problemSP to determine the daily mulsiite CSP
power outputs using the given daiDNI values. For the eftgive use of the historicaNI

measurements to simulate t8&P power outputs, we introduce a common time scale to



allow the meaningful comparison of daily midite DNI data in a specific season and
deploy statistical clustering techniques to obtainaaalytic characterization of the daily
multi-site DNI to construct théNI regimes. We use theéSPpower output model and the
regimebasedDNI characterization to probabilistically represent the power outpuESe$

at distinct sites. We apply conditional probability concepts to incorporate the probabilistic
multi-site CSP power output representation into the extended probabilistic simulation
framework.

As such, the proposed methodology explicitly represents tbertamty, variability and
intermittency of theCSP power outputs, the flexibility imparted BYES as well as the
interactions among loads and resources. It also captures the seasonality of the loads and
CSP resources. The primary application of the edth approach is to evaluate the
contribution of integrate@SPresources to the power system over lofigem periods. We
illustrate the effectiveness of the proposed approach using representative results from the
extensive studies we performed on systémdifferent geographic regions under a wide
range of conditions. The studies we discuss provide a realistic assessment of the impacts of
the multisite CSPr esour ce i ntegration on t he syst el

environmental metrics.

1.4. Outline of the Thesis Contents

This thesis consists of four additional chapters. In Chapter 2, we focus on the
probabilistic characterization of the medite CSPresources for the simulation purposes.
We start with the modeling of the development of a detestiinmodel of the muklsite

CSPpower output. Then, wiecus on théDNI data processing for utilizatido analytically



characterize the muliite CSPresourcesin Chapter 3ywe briefly review the conventional
probabilistic production simulation tool and describe the steps to extend the production
simulation with integrate@ SPresources.We describe the modified version of the WECC

test system in Chapter 4 asdlect some representative results from the extensive studies
we performed to illustrate thapplication of the extended probabilistic simulation approach.
We concludeour contributions and provide directions for future worlCimapter 5There

are three appendixes at the end of the thesis. In Appendix A, we sumtharizetations

used in this thesis. We describe in detail the scaling and descaling algorithms in Appendix

B and Crespectively
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2. THE PROBABILISTIC MULTI -SITE CSPRESOURCE
POWER OUTPUT MODEL

The quantificationof the variableimpacts over longeiterm periodspof the multisite
CSPresources integrated into a power system requiresatigruction ofa multisite CSP
power output modelwhich explicitly representsthe uncertainty, intermittency and
variability of the locationaDNI and their impacts on th€SP outputs We devote this
chapterto the description of the proposed nugliie CSP generationmodel and its
deployment to probabilistically characterize such outputs

This chapter contains three sectioms. Section 2.1, w derve a solution foran
optimizationproblemto determine the muksite CSPpower otputs, usinghe givenDNI
values.In Section 2.2we develop theprobabilistic characterizatioof the locationaDNIs
and introducehe notion ofmulti-site DNI regimesto explicitly representhe salientDNI
patterns indistinctgeographical areas. Wesethe scaling algorithm to scalie historical
DNI dataonto a common time scale so asittentify the days with similascaledDNI
shapesWe introducethe descaling algorithm teonvertthe scaledNI samplesonto the
actual sunriseto-sunset period of the dafpr simulation purposedn Section 2.3, we
analytically characterize the multite CSPpower outputs andescribe the approximation
of the regimeconditioned distribution functions of tli@&SPpoweroutput random variables

(r.v.s). We use the notatiardefined in Appendix A.

2.1. The Deterministic Multi -site CSPGeneration Model

We startthis sectiorwith a brief descriptiomf the behavioof astandaloneCSP. Many

conventionaland nucleampower plants use heat to boil water to produce -pigissure

11



steam, which expands through the turbine to spin the genes&toto produceelectricity.
CSP technology extracts the heat from the saaergyand in a way similar to the
conventional or nuclear plantsroduce steam tagenerateslectricity. A typical CSPsetup
includesfour primary componentscollectors thatconcentratesolar rays receivers that
collect and convedolar energy into thermal enerdlge TESthatstores thermal energy for
later useanda power block that converts thermal energy into electrivitg refer tothe
collection of collectorsand receiversas the solar fieldWe summarize in Fig. 2.1 the

energy flovs in a typical CSP.

—P

—_—P SOlai’ﬁeld ........................ po]'ver bl()c _______ >

— solar energy
TES
-------- » thermal energy

- -+ ¢lectrical energy

Figure2.1: Energy flowsin a typicalCSP

For apowersystem with integrate@ SFs at multiple locations,hte powerutput of each
CSPdepends on thBNI at its location, thespecific CSPconfiguration and the utilization
schedule of th@ES The aggregated power produced by @& must take into account
the correlatios among theDNIs at the multiple locations The CSP converts the solar
energy into thermal energy, used instantaneoegilyer to generate electricity in the
turbines or to be stored in tA&ESfor later conversion. The utilization of ti&ESallows

12



the CSPto produce electricity even outside the suntssunset periods and to smodkie
total output of theCSPunits. Moeover, theTESdeployment enables th@SPoperator to
construct a multsite TESschedule to meet some specific operational objective, such as
the maximization of the total energy produced by the rsittiCSFs or the provision of a
smoothed, aggregateduiti-site CSPpower output. SuchESscheduledeadto the inter
temporal and spatial coupling 6SPoperations athe differentlocations. We note that the
thermal energy can be charged imtischarged from th&@ ESwithout the violation of each

T E Smaximumminimum capability.The TESphysical capability refers to the maximum
amount of thermal energthat can be stored in thEES The storagehour capability is
expressed as the ratio thie physical capability tahe maximum input of power block for
electricity generation[22]. The charginglischarging rate of eachES device must be
within its capacity range and tA€&Sdeviceoperatest any point in timen only one of its
operational statek charge, discharge or idle. AESdevicecannot charge and discharge
simultaneously. Typically, due to the natureT®&S the thermal energy also incurs losses
over time R3]. Such losses are specifiedherin terms 0f% or as aloss rate of energy in
units ofMWh ¢/h.

We construct the power output model of a system with intega& atS sites to
emulatethe multisite CSPoperations withTESfor each day in a simulation period. For
simplicity, we assume that there is a singQePat each sits. In the case of multipl€SFs
at a sites, we construct an equivalent singisSPto represent the aggregated individual
CSPoutputs at the site. We decompose each dayHnémuatduration sukperiods We
assume that each variable of interest, excepvahe of stored energy, remains constant

during a sukperiod. Since the energy storage is of critical interest, we adopt the

13



convention that we represent the value of each variable, including thermal energy stored, at
the end of each syberiod. The systerfoads and th®NI values for each superiod are
assumed giverA subperiod is the smallest, indecomposable unit of time and determines
the resolution of the simulationy phenomenon of shorter duration than a-pahod
camotbe represented and sagsored.

The instantaneous solto-thermal energy conversia sitesis given by the nonlinear

mapping b (@, whose argument is tH2NI ul[h]. Since the plant design GfSPis out of

the scope of the thesi®, (@ is not explicitly formulated in this work. We rely on tBelar

Advisor Mode[22] T a dynamic model developed DYRELT to determine the amount of
thermal energy collected by the solar field in eachserodfor the geographic, weather

and time inputdata of theCSFs. The nonlinear mapping (9, whose argument is the

thermal energyz! [h], is used to instantaneously convert the theemalgy into electricity:

= &z'[n] ‘6 Z8qn° 6 2 6 Z[H ‘& 1
a (e ozl G, N0 2l 020 2 L e
S 3 T 5¢ T

Here c, representshe sites CSPcapacity, zI™® representshe thermal energy input rate
neededo guaranteehat thesites power block produceelectricity at its rated capacignd

L ., arefunctioncoefficientsi= 0,  [22]. We utilizé theTESstatusvariables/{[h] ,
/ d[n T {0,1} to define the operational state oT&Sdevice vi[h] (/ ¢[h]) is equal to 1

when theTEScharges (discharges). Both are 0 whenTiE&deviceis idle. ed [h] denotes

the stored thermal energy at the end of themerind h. We represent th& EScharging

14



(discharging) efficiency by the constamt (ms)l' (0,1]. We also denote the thermal

energy loss rate, expressed in units of percent pepetibd, by the constant_. TheTES

physical and operational capability limits are givenafj" and e™ . The subperiod

charging (discharging) ratkl[h] (q¢[h]) has values within its aIIowe@US“"‘,kg1ax

(§a.". a;™ ) range.
We formulate thescheduling problem(SP [13], [14], [22], [23], [24], [25], tOo
determine the optimal dayoperational trajectory of eacbSPwith TES using the hourly

DNI values in the arraygui i u$i ...i ug . The SPis formulated asa constrained

optimization problemThe set of constraintsomes fom the TESphysical characteristics
and operational limitsFor the specified’ES objective function, each coefficie@t‘sj [h]

can be determineditherfrom historical data ofrom forecasts or be songgven values.

Thedetailedstatement of the dailgPfor dayd is:

H S
mex a 8g:ln HnD (2.2a)
{kgéh@/g hg,cﬁ hﬁgds H\edsgh@ 8 q h=1 s %
28g @d hghgl,2,.. H s4,2,.S}

subject to

max
S

" The physical capability e. ™ , expressedn the units ofMWhy, refers to the maximum amount of stored

thermal energy; the storage capability is expressed as the ratio of the physical capability to maximum input of

max

power block for electricity generation. TA&S capability, expressedn hour units, is the ratio of e~ to

max
S

z
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(2.20)

ej¢@ vy,) &hy +KH DE , D a
|
vi[h +/ g el ! (2.2)
1
23] ¢ b (ul[n) -kIH g i (2.2d)
|
pllhl=a,(z4[H) : (2.20)
? h=12..H
eM™¢ élh ¢ T& U (2.2F)
min d max % S=lZ S
z?" ¢ z [h] ¢z i (2.29)
VAN KT 6 K v kT i (2.2n)
1
Jslhlatheqdn ¢;Jn g™ % (2.2)
HOPELIRCEY g (2.2))

For thegiven DNI values, the solution afhe deterministicSP in (2.2) determinesthe
optimal multi-site CSPoperations and power outputs for each-pahod of dayd. Without
TES no scheduler is needed since all thermalenergyis instantaneoug converted to

electricitywith
plnl=a,( b(uiH)) (2.3)

To illustrate the application &P in our work, we providein Figure 2.2 the plots of the

hourly power outputs for day 180 of yea®07 of a CSP locatedat Midland Texas

without/with aTESdevice. TheCSPparameterare /1= m=0.95, y, =0.03, el =0,
ey™=0o0r 840 MWh, , z"=50MW, , zI*=140MW, , g™ k™ g qf" q™

=[0,140 MW, , c,=60MW and gL .,, L5 L, L L .,g=[0.0,0,0,03. Each

16



objective function coefficiens set tol.
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Figure2.2: The CSPpower outputsvithout TESin (a) andwith 6-hour TESin (b) for day

180DNI (dotted line) in year 200at Midland Texas
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As shown in Fig.2.24), the CSPenergy production at each howrthout TESis totally
determined byts hourly DNI value. When th®NI value is low, theCSPpower output is
low, andwhen theDNI value is high, th&€€SPpower output is high but cant violate its
capacity. In Fig.2.21), the TES stores thermal energy for electricity production and
mitigates the impactsof DNI intermittency on theCSPenergy productionThe two plots
in this example illustratethe capability ofSPformulationto emulate the behavior GISP
resource without and WithES

The SPforms the basis teharacterize the mulsite CSPpower outputsHowever, for
each dayd, the locationaDNI values arénighly uncertain and so we represent them as the

realizations of theDNI random variablesr{.s) at theS sites. The historical data
guiiuji ..t ug areindeed the measured values of tasg As such, th&Psolution

maps theseDNI realizatons into the realizations of the power outpul.s.

ap; ¢ Pyi .. PpS . In this way, we probabilistically characterize the msite CSP

power outputs

2.2. The Multi -site DNI Model

As the first step in the probabilistic characterizatwdthe CSPpower outputswe analyze
the multisite DNI data obtained from the measurements at $hsites. A single
measurement is used in each-paiod at each site. We assume that these measurements
are made simultaneously at all tBsites ineaclsubp er i od dur i ng-teach
sunset periodi-or aprobabilisticcharacterization, we use as many data points as we can

collect. However,he analysis of these data is complicated by the variations in the sunrise
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to-sunset periods at thesites We consider a data set bflays in a given seasowith

possibly several yearsf data collected. The date of each dag the data collection is

known, as are the corresponding sunrise and sunset times at eackrsite theM 'S DNI

measurementﬁ[m] taken at equal intervals during the suntissunset period in day

we construct theorrespondinddNI measurementector:

[ 2
e u
e u
¢ o
& =GB m R (24)
é u
¢ u
€= . u
< eng ! o3
gheMs Gy

To allow the effective comparsons ofthe DNI data from different days of a season, we
introduce a scaling scheme over the suriesgunset period of each day irttte common

time scale withJ equatduraion timescaled suiperiods. The scaling process maps the

measuement elements i[_E'Sinto the computedector Xisi R’ on the common time scale.

Mathematically, we represent the scalimpcessas thetransformatiorfrom RY: into R’
and express it as:
eyl o
e . g
L8 U
Yo=GUE) Zy.¢i gUR (2:5)
¢ 1w
gy, Y

We visualize he time scaling process shownn Fig. 2.3.
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Figure2.3: The time scaling process in dagt theSsites produces the computedl

values forJ equal timescaled sulperiods from sunrise to sunset

We providein Fig. 2.4 an illustrative examplef the application of this scalingrocesgo
the single Las Vegas, TexafNI shapes for year 2013 he detailed steps dafcaling
algorithm are discussed in Appendixrg[26].

We continue with the discussion on the use of the comimmsscaled computed

variables Xis' For each day, we construct thecaledDNI array

Y' =@yil Yol Y gR7C (2.6)

using theS vectorsfs ,s= 1, <V represerdrealizations of the daily muigite

DNI on the common time scalg theS sites.As shown in Figure 2.5, we colleatrays

Y' for | days and construct teet

Y={Y':i=12,..,1} (2.7)
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Figure2.5: Collection of seasonal daily scalBiNl shapes aCSPsites

We view he setY to bethe sample space of ti&site DNI r.v.s on the common time
scale Theset Y providesthe basis for the identification sfmilar daily DNI realizations
via the deployment of statistical clustering techniques. In this way, we classify the samples

in the set into Rnon-overlapping cluster® ,,r= 1, R2as shéwn in Fig. 2.@cach

cluster groups together a subsesiofilar time-scaled daily multsite DNI realizations

R.NR, = Ar rj (2.8)
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: (2.9)

The cardinality|R, | of each tusterR ., r= 1, RZprovides the basis to computee

clusterprobability in terms of the fraction of thedays that belong to the clustee,,

_IR |
Pe =7 (2.10)
=TT T T~
‘ luster 1 \\
LN ™ C .
"‘n‘ Q.. _" )
..’ ‘o’ ~ -~ R . _
- . -1
- ‘. :
: S
¢ common-time- =
. . 5 . .
i scale DNI : ke mealns C'I%Stenng
= collection Y : algorithm
00. :: .,_.___.-“.
- ¢ ( ’ cluster R .
‘Q. “’ )
Yagunt . R . .
~—~— e — s —

Figure2.6: Diagram representation of the clustering process

We refer to the clusteR , and its probabilityo, as the regim&k . We representach

R . by theR, centroid to which werefer ashe regime daily DNI pattern

For an example of actual datag wcale and classify 2005 sumnbéM| data at Abilene,

Lubbock and Midlandh Texas, into four regimes, whose centroids are plotted in Fig. 2.
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Figure2.7: The centroids ofhe commortime-scale computed values of the fdix|
regimeswith J = 80, obtainedvia thek-means clustering algorithm [27§r the summer

DNI dataatthethreeTexassitesi Abilene, Lubbock and Midland
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descalingprocesdor the computation of the daldata at th&s CSFsites

We makeeffective use of conditional probability to probabilisticalgharacterizehe

multi-site CSPresources in terms of tHe regimerepresentatior28]. We draw random

samples from eactiusterR , to use as inputs into the muttite CSPpower output model.

The simulation of a specified day in the given season requires that a sample be
appropriately dscaled into the dag multi-site sinriseto-sunset perioddVe descale the)

DNI values at each sitin the drawn common time scale sample into the comdniéd
A ,d NS d,b d R ib d d, N ~d,e ~d,b H

values Qg gh” gus h% +1 ,..g ug h°ggfor the (hg®- h°+1) equalduration

subperiods in the dayl sunriseto-sunset period at each sgéWe represent the dealing
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process by the transformatigri. We summarizein Fig. 28 the sampling andlescaling

step.

To maintainconsistency of the midnigho-midnight representation of the loads use

T

the components of the stded vectorgugghs” guy hg™+1 ,.g ug ho°géto

s

constructhe augmented daily vector for the enttresub-period daywith

éu?[1 ]
il e
e : u
- y
d N~ d,b
e o
ngg : HRH (211
e o
I8 g
e . u
e u
é N
gic[H] g

whereu! represents the dajysites DNIrealizatiors from midnight to midnightwith:
ud[n =0 for hi [1, h2°-1JULhSe 4, H] (212

To illustrate thedescaling and the augmedtvectorconstructionwe providein Figure 29
the plots ofthe common timescaleDNI data andhe daily descaledDNI for day 165 of

year 2013t Austin, Texas The vectoru! is simply a realization of thev. vector:

u (2.13)
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27



We denote the realization of the. vectory ¢ conditioned on the clustd® ,i.e, U*

sl

by theaugmented vecton¢| . We construct th®NI r.v. arrayy * from the Svectors

r

f=@uiysi iy gre (2.14)

r gRH3S (2.15)

For given DNI values,the solution of theSP that maximizes the@bjectivefunction in

(2.22) in (2.2) is the optinal multi-site CSPpower outputat theSsites In particula, for a

nC

given sampleof conditionedmulti-site DNI rvsi UYL U$ , the solution
—_ r

4 d
e,gsr

obtained the corresponding optimal sampleconditioned multisite CSP power output

rv.s i Ef‘ , PS
=~y

, €, gg ¥ which are conditioned on clust&®, . We depict the

r

mapping process in Figure 2.10 to indicate thatdé&eerministicSP solution maps each
sample into the conditioned optimal outputs. In this way, we obtain the-sitaltCSP
power outputr.v. sample space, which we cdeployto approximate the muigite CSP
resource power outpuiv.s cumulative distribution functiofc.d.f).

Thus, the SP together with multi-site DNI clusters provides the probabilistic
characteriation the multi-site CSP resource power outputv.s . We devote the next
sectionto theprobabilistic characterizations of tlk&SPpower outputbased orSPand the

multi-site DNI model.
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Figure2.10: Mapping from the muksite DNI r.v. sample space into the mustite CSP

power output.v. sample space using t&&®

2.3. The Probabilistic Characterization of the CSPPower Outputs
The regimebasedDNI modelprovides the basi® construct the probabilistic model of
the CSPpower outpud. The SPsolution for each inpubNI sample drawn frona cluster

R, determines the corresponding conditio@8Ppower output realization. We represent

such aconditionedrealizationby thearray Ed\ r

d

S

i _pg\r SRWS (2.16)

Mathematically Ed\ is the corresponding realization of the mudliie CSPpower output

r.v.array P¢ conditioned orclusterR ., where
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vl

r GRWS (2.17)

i
3

The computation of thday d multi-site CSPpower outputrequires that we sample from

each clusteR ., r =1, 2,é , R, and determine the correspondic@nditionedrealization

of Ed . We use the conditiad realization of the power output for each sample drawn

r

from a clusterR, to construct the subspace of the sample spad;édofwith multiple
samples from that particular cluster,. We systematicallyrepeat such a procedure for

each regimeR  and obtain theR subspacefor each conditionecl:Sd ,r=1,2¢€,R

The sample space dj" is simply theunion of the noroverlapping subspaces that we

construct fotherepeated sampling from ticlusters.
We compute the total aggregated conditioned power outputs &I $s at theS sites

for each sukperiodhto be

p¢

= pleh “4 p’h 2.18
N a g 2lps ér (2.18)

h

We thenconstruct the dailpower outputectors:

S
— = d
= a ps

r s=1—

(2.19)

pd

r

For each suiperiodh, we approximate the.d.f. F_, | (® and its momentdy using the

h,r

sample spacef Ed\ . In terms of theconditional probabilies, we statethe c.d.f.

30



de | (®to be
PS |,

.o

= Prob{ P ‘h ¢ x oneachR }

F | (x) = Prob{P§

R
=4 Prob{E’:;.| ) r¢x} Pro{ R }
" ..
=a FEg )P, (2.20)

(Q ,0.,) for theH hourly values

r

Also, for the dayd, we approximate the joiratd.f. de

d
ofES

T the sum of the conditionedv.s. Ef

d
,’Ez

, €, PJ , which we use to

r r =Sy

computethe F_4 | (@ ,Q., ) with

r

Fos (X1:%5,0 %) = Pro{ P | e % n=12..H

R

=4 FE” (Xqs Xgren Xy )P, (2.2

r=1

The probabilistic characterization of the mugiie CSPresource power outputs i@.06
T (2.21) is thefoundationof the extension of the conventional probabilistic production
simulation approach to represent the msilte CSP power outputs in a systemwith

integratedCSHs.
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2.4. Summary

This chapter provides a descriptiontbé constructon of a probabilistic model fahe
multi-site CSPresourcepoweroutpus, usingses of seasonaDNI dataat theS sites with
CSPks. We first formulate an optimization problem used to compute the -BitdtCSP
power outputs. Thenwe scale theseasonadtaily DNI datainto a common time scalso
that weare able t@wompare thelataof different daysn a meaningful wayWe classify tle
time-scaled DNI data into severalclusters.For simulation purposes, evde-scale the
samplesdrawn from eachclusterand use them to compute the corresponding raiiéi
CSP power outputsfor the day of interest. We use thesamplesto approximate the
conditional distributions of th€SPoutput randonvariables

In the next chapter, & provide a brief review of the conventional probabilistic
production simulation approach and describe the steps needed to incorporate tegemulti

CSP output model into the probabilistic production simulation framework.
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3. THE EXTEN SION OF PROBABILISTIC SIMULATION
APPROACH

The probabilistic simulation approach is widely deployed in the evafuaifothe
expected energy prodien by each unit over a specified study peridide reliability
metrics, the expected system production costs, the expected greenhouse gas emissions and
any other metric of interest to measure the variable eff€bts ®nventional probabilistic
simulation isa computeibased emulation of the power system supplyd demandide
resource operations tasses$iow effectivelythe demand is met over a specified period
However, he conventional approadannotrepresentime-varyingresourcesuch asCSHs.
In this chapterwe review the probabilistic production simulation tool basics disduss
the necessarynodifications toincorporate the model developed in chapter Pefresent
the integratednulti-site CSPresources. We alstiscuss some implementatiosp&cts of

the extended simulation approach

3.1. Review of the Conventional Probabilistic Production Approach

To realistially emulate the operation of a power systara,decompose a multiphear
study horizon intoW non-overlapping simulation periods. Wapecify each simulation
period in such a way that no changes in the resource mix, unit commitment and the policy
environment occur during its duration. Such changes may occur, however, in subsequent

periods.We denote tb index set of superiods in each simulation period By :

T ={1,2,...T} (3.1)
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For concreteness in this description, we choose a week as the simulation period and one
hour as the smallest, indecomposable unit of time With 168 andH = 24. We illustrate
the generastructureof our schemen Fig. 3.1 We note that thetructure of the schems

sufficiently general to accommodate atssiredgranularity®

study period

A time

TN NT—
sub-period 1 sub-period t sub-period T

A,

Figure3.1: The generastructure of the scheme based onghsitioning of the study

period intoW simuation periods with eachsimulation periogartitionedinto T simulation

subperiodsand eaclsubperiodequal to the smallest, indecomposable unitroé

Theload andresourcecharacteristics, as well as thrit commitmentin each simulation
period are inputs into the simulati. Based orthe chronologicalload datafor the given

simulationperiod we develop ambability distributionto representhe loadr.v. L. To do

so, we ignorethe time informationand rearrange the loads in order adcreasingalues
from the highest to the loweahdconstruct the load duration curdel(c.). The reordered
load valuesontainno temporal information and all the inte#mporal effects aralsolost

in this representatioms an examplewe plotin Fig 3.2 the ERCOTchrondogical load

data for Monday, July 25 to Sunday,July 31 2011 We display inFig. 3.3 the

"With the consideration of the thermal dynamic process, we dldegtanularity no less than 15 minutes as
one subperiod. If however, granularity smaller than 15 minutes is chosen floe simulation, the

modifications of theSPare needetb take into account the dynamics of the thermal presess
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corresponding.d.c.. We can identifythe maximunrhinimum loadvaluesfrom thel.d.c.

during the simulation periodWe interpretthel.d.c. asthe complement of the.d.f.of L.

Consider an arbitrary poirt”, h' ) onthe l.d.c. We alsointerpretsuch a point as the

statementthat the load exceedthe value of” for h hoursduring the T hours ofthe

simulation periodThe normdization ofthe timeprovidesthe fractionh/T, which we view

to bethe probabilitythat the load exceedbe value® in the simulation periodThus, we

use thanvertedl.d.c. L to analytically characterized.f. F_(jof L:

L (()=Prob(L 2() ¥ Prol(L ()¢l E(() (3.2

P A Y A W A WA A

ANANAWAWA /\\ [\

load (GW)

Mon Tue Wed Thu Fri Sar Sun hour

Figure3.2: TheERCOTsystem chronologicdlourly loadfrom Monday,July 25 to

SundayJuly 31 2011[18]
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Figure3.3: Thel.d.c.for Monday,July 25 to SundayJuly 31, 2011

A unit generateenergy to serve the loadnce it iscommittedand dispatched2B]. In
each simulation period, E “ is the index set of theommittedconventional unitgandcan

be viewed as subset of thE i the set otConventionafgeneratiorunits, where

E ={i,i=12.|E|} (3.33)

E "={i:1¢i PE| andunit is committed in simulation pedw} (3.3b)

We model the availability of each controllable unit by its mstiéite available capacityv.
[29]. Each unit may be represented by a sifdtek or a multiblock model. The blocks of

the committed units iB " are loaded to meeté load in the order of their natecreasing

marginal pricesluringthe periodw. In this way, we construct the periedloading order
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of committed units and we refer to this order as the loading Tisé probabilistic

simulation approach uses the notion of the equivalent loadL, i the remaining

uncertain load served by the blocks in the loading ftst ¢he firstk - 1 blocks are loaded

The recursiveelation

Ly=Li.- A with Ly=L (3.4)

computes the equivalent loadv. L, iteratively where A, represents the available

capacityr.v. of theloadingblock k. We assume that each unit is independent of each other

unit and the load, ancbmputetheL ,,L ,, € f alwatuesrapidhy by convolution
to evaluate the variable effects of the power systeeaah simulation perioddere,L ,is
the invertedl.d.c. corresponding to thequivalentloadr.v. L,. As an example, & use

L ., to determine the expected energy product®nof loading block k over the

simulation period:

Gy
& = fiL ..(0dC (3.5)
Ce1
with
K
Ck :é o8 k 4, 2,.. (3.6)
g=1

wherec, is the capacity of the bloak

Given the heat rate and fossil fuddta foreachloading blockg, we cancompute the

block k expected production costs and emissidmsng thesimulation period. In addition,

37



the productiorsimulation also providess a bypoduct the values of the systeraliability
metrics of interestSincethel.d.c. of the equivalent loadyv. after all theblocksare loaded
provides the complement of tleel.f. of the load that remains unseryede canderive the
relationsto determine thdoss of load probabilitLOLP"Y) and theexpected unserved

energy(EUE") by:

LoLP'=L . (C,.) (3.7)

+ o

EUE"= L .()d/ (3.8)

CKW

whereK ¥ is the number of blocks loaded during the simulation pesiod/e make use of

(3.7) and (3.8)n the evaluation of the metrics of interest.

3.2. Reexamination of the Load Representation

To mesh the probabilistic simulation framework with the probabilistic model of the
multi-site CSPpower outputs, waeed taeexamine the load sample space. In each weekly
simulation period, we collect thid daily load values to construd¢he loadr.v. sample

spaceof the T load valueswhereT is thetotal number of sukperiods in the simulation

period.We usethe aggregate@SPpower output.v. E’g

) in each sukperiodh to meet

part ofthe corresponding loaaf the subperiod.To do sowe partitionthe loadr.v. sample
space intdH non-overlapping subsets, with each subset containing realizations of the load

r.v. conditioned on the superiod h. Consequently, we may view the sample space as a
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matrix with D rows andH columns. LetT

T |, ...T |, betheH subsets o , with

each subsefT |, being asubsetof theindices one for each dayf the subperiod h for

the D daysin the simulation periodv. Thus, we write

(3.9)

(3.10

T\hﬂT \hi: A for h, hj

sub-period 1 sub-period h sub-period H

[ ——— I o w — -

day 1 | £y | - £y . £y |

I : | : 1 : 1

1 1 ' : 1

I 1 1

dayd 1 Lyegpna 1- £ ixatyen | faa |

T : 1 : 1 : 1

| | ' '

dayD I £H*I:D—1:I—1 I £H*(D—1)—Ff I £H*D =£}- I

l—__.' —— 1_Y_r

{t,.ce 7|} {t,.red]} {.red}

compute the [d.c. of compute the [d.c. of compute the [d.c. of
the loads in the hour 1 ...| theloadsinthehour’ |...] theloadsinthehour H
for the D davs for the D davs for the D davs

FLI(’E) FL?F(}E) F}:H({)

Figure3.4: Theloadrepresentation for the partitioned. sample

We use the samples the sef{( T \h} to approximate the.d.f. F O of the load
r.v. conditionedon the sukperiodh. We summarizein Fig. 3.4 thevisualizationof the
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load r.v. sample space partition we use in this analySimce each of théd non

overlapping subsets has aqualprobability 1H, theapplicationof conditional probability

allows us to restate treed.f. F_($of L in terms of theconditioredc.d.fsof L |h. Thus,

F (¢) =Prob{L ¢4}

=Prob{ L¢ /7 in each sub- periodth

= g Prob{L ¢ 7| hour i} Prob rourh
h=1

“LHE w 3.11
_ﬁf?:luh() (3.11)

Under the assumption that each uhias uniform characteristicsduring the entire

simulation period, we express tieed.f. F_ () of the equivalent load.v. L, similarly in

terms of the conditionecld.fsof L, g In this way,

F (0=Prob{L, ¢ 4= Z4F () (3.12)

h=1

where F. | (¢) denotes the probability of the equivalent load conditioned on the sub

period h. We restateall the probabilistic simulation relations terms ofthe conditional

probability with the conditioning on the syeriodh of each day in the simulation period.
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3.3. Extension of ProductionSimulation with Time-DependentResources

We incorporate the representation of the rmite CSPresource impacts by making use
of the load sample space partitioning in combination with the regased multisite CSP
power outputsThe multisite CSPpower output.v. meets some of the demardth the
conventional controllable resources segitheot her part . We wuse the
| o&dtoo repr esent t herv.ithatnsariemby the coriventoonabunits,o a d
explicitly taking into account the output provided by B8Fs. We use the conventional
assumption that the loaohd multisite CSPpower output.v.s are statistically independent.

We approximate the.d.f. FC‘h (® of the controllable load-.v. conditioned orthe cluster

R, for the subperiodh making repeated use of thenvolution operatioriWe thenrestate

thec.d.f. FC‘h (® of the controllable loadv. conditionedon theclusterR , as:

H
e, (= ProCeCcIR) = Fey (9 (3.13)

Once the approximation d¥g‘ (® for a regimer is obtained the probabilistic simulation

for the controllable resources proceeds exactlyuader the conventional case. The
expected value of each metric of interest in a simulation period is evaluated as the cluster
probability-weighted average ofié conditiomal expectedsalues.

For the entire study period, the expected value of each metric, sachliability index
an economicmeasureor an environmentakmissionvalug is computed as the sum of the

expected values in each simulation period.
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3.4. Summary

In this chapter, wepresent areview of the probabilistic production simulation
framenork for systems whose resource mix is constituted only of controllable uvés.
devote the rest of this chapter to discuss the extensionaaptebility to explicity include
the represerdtion of CSP resources. We modify the load representatiorso that it is
compatible with the regimdsasedCSP power probabilistic representation developed in
Chapter2. In the nextchapter we discuss the application of the extended probabilistic

simulation approach tassess the variable effectssgstems with integratedSPresources.
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4. ILLUSTRATIVE SIMULATION RESULTS

Theextended probabilistic approach laaside range of applications, including resource
planning, production costing issues, environmengasessmentgeliability and policy
analysis We carried out extensive simulation studiegh the extended probabilistic
approachand devote thishapterto pregning representative results that illustrate the
capabilities of the approach to quantify the variable effecta ®fstem with integrated
multi-site CSPresourcesWe start out with a description of the test system characteristics
used in the represenitad studies discussed here. We present the resfutte four study
sets selected for the discussion in this chapter the study set I, we focuson the
investigation of the impacts of deepeni@§P penetration We discuss the impacts thfe
TES capability in the studyset Il. The dudy set Ill results provide insigktinto the
capability ofthe multi-site CSFs to replace the retiredonventional generation capacit
We analyzethe impactsof two different TES operational objectiveon the simulation

resultsfor thestudy set IV.

4.1. The Test Systemand the Simulation Parameters

We use a single test system for the four study sssrted in this chaptein our
discussion, each simulation study is considered forydase 2004 so as tofocus on the
nature of the results and the insights they provithe test system israodified version of
WECC 240-bus system[30]. The test system represents only the resources and loads
without the networkWe scale th004 WECCIoad data so thahe annual peak load is
81,731MW. Thetest systenhas902 conventional genation units witha total nameplate
capacity of 96,443MW andwe explicitly representhe unit maintenance schedul&he
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reserve aremaintained at 186 level throughout the yeaWe use the outage probability
and the economics @elveryblock for each conventional urfiom [30]. The fuel cogtand
CO2 emission rate data aedsothose given irf30]. Eachcase studyonsidersCSFs with
equal capacitynstalled atsix selectedsites.The six sites selected for théSFs are allon
the WECCfootprint, namelyBarstow, Blythe and Lancaster in Californlaovelock and
Mercuryin Nevada andTucsonin Arizona EachCSPuses the parabolic trough structure
with a solar multipleof 2. We use historicaDNI measurement dataith M = 24 from
202 7 2004 [31] to identify theDNI clusters forour studiesWe assume thaachTESis

operated to maximize thetal energy productionf the aggregated SPunits For the SP

objective functioneachcoefficient g: [h] is assumed tbel.

We patrtition the 52 weeks of the study year into four seasodause one hour as the
smallestindecomposablenit of timefor each daywith H = 24. Given the importance of
theJ valuein the DNI patternrepresentatiorthe J choice involvesa tradeoff between the
accuracy of the solar pattern representasind the computati@h burden. We determine
the J valuefrom asensitivty studyover the [0,100] interval. For each valueJpfve scale
and then decale DNI data and evaluatethe average absolute differenbetweenthe
descaledDNI dataandits measured value expressed in per unit of the meaBNédalue
For thespecifiedM and H values we plot in Fig.4.1 theaverageerror for the rangeof
study forJ. As J increases, thaverageerror decrease#n our simulations we useJ = 80
to obtain anaverage erroat or belowl % level for the equaduration common time

scaled suiperiods in theCSPmodel
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algorithmfor theautumnseasorat thesix sites selected for simulation

An importantparameter to be determined is the number of regimese in theDNI

represerdtion To gain some insightsto the value ofR, we scalethe 20021 2004 data
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andclassifytheminto a specified numbeR of clusters with R = 3, 4, 5 We display the

corresponding resultlr the autumnseasonn Fig 4.21 4.4, respectively We plot the

patterns of each regime and provide the probability of each rdginsachR we chamse

We note thafor the autumn seasat leastoneregime has probability smaller than 0.10

whenR exceedd}, and that there is one dominant regime with probability higher than 0.6

whenR is less than 4 Based ortheseresults we canobtain a acceptablepproximation

of the DNI uncertainty withR = 4. All the studies discussed in this chapter are obtained

with R = 4for each season
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4.2. Study Set I: Impactsof the DeepeningCSPPenetration

In the study et I, we use the test system with varying ameuwritthetotal installedCSP
capacity from QMW i the base caseto 3,000MW in 600-MW incrementswith a 1-hour
TEScapabilityat eachCSP. We start out the discussiontbie results oftudy set | with the

base case for the supply system consisting only of the controtlaimentionakesources.
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We summarize in Tabl.1the values of the reliabilitynetricsi the LOLP and theEUE T

andthe expected production costs @ahdCO, emissons for thesingleyearperiod

Table4.1: Simulation results fostudysetl base case

. EUE expected production expectedCO>
metric LOLP (MWh) costs($) emissions|ps)
value | 112x10"3 253 1 x10%° 3x 10

We next discuss theensitivity cases with increments thfe CSP capacity. For each
case, we evaluate metricé interestand theirpercentagechangesw.r.t. the base case
results.We display the resultsn Fig. 4.5 The LOLE and EUE reductionsreflect the
reliability improvements in the system due to the mgite CSPintegration.The results
clearlyindicate the diminishing returns in the reliability improvements: althouglC®e
integration with higher total capaciturther reduces thd. OLP and theEUE values, the
reliability improvement of each successive capacity increment has smaller impacts than the
preceding increment. In additiome note thathie annual expected production costs and
CO2 emissions decrease almost linearly as the &P capacityincreases. Such results
are reasonable since every additional unit of @&P generation displaces the energy
produced by the more costly and polluting units. The production costS@ndmissions
of each conventional unit are assumed to be linearlyerddmt on the unit energy
production and so the annual expected production costsC&ahdemissions behav
accordingly. Similar behavian reliability improvements, costs a0, emissiongs also

evident in the wind anBV resource integration studipsrformedearlier R9], [26)].
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Figure 4.5 Theannual valuef each metriavith the corresponding percentage change
w.r.t. the base casealuefor the CSPpenetration sensitivity studgr installedCSP

capacity from @ 3,000MW

We focus onthe simulation results for four seasdos the case with 1,20MW CSP
resourcesand examine the relationship of the annuoadtric values to their seasonal
componentsin Table4.2, we give thesimulation resultfor the four seasornsndalso for
the entire year. Since summer llas highestenergy demand, theOLP in thesummeris
almost100 times of that ofhe springseason. fie expectedCO. emissiondn the winter

are10% lower thanthosein the summer Thesesimulation resultgre representative of the
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general nature of these metrics aexplicitly demonstrate theseasonal variations of
reliability and economic impacts of the integra@8Presourcs and therelative influence

of each season

Table4.2: Seasonahnd yearly vales of the metrics of interest for tlwmsewith 1,200
MW CSPcapacity

season
: entire2004
metric
spring summer autumn winter year

LOLP (10"%) 0.16 15.9 5.23 2.92 6
EUE (MWh) 18 1124 8.2 0.6 123

production
costs (10 $) 2.43 2.60 2.47 2.24 9.74
expectedCO>

emissions 7.91 7.34 7.72 6.60 29.6

(10*%Ibs)

We next explore the impacts BINI regimein the evaluation of the metrics of interest.

We display inTable4.3 themetric valuedor the summeseasorconditioned on the cluster

R.,r =1, 2, 3, 4together with theegime probabilityweighted average-rom these

results, it follows that the metrideavemarkedlydifferent contributions for eaalegime to

the metrics inthe summer period. For instance, tt@LP conditioned orclusterR , is
about23 % larger thanthe LOLP conditioned orclusterR ;. This is becaust&hose daily

DNI patternsin clusterR ;represent th®NI pattern withthe higher solar energgontent

The simulation results clearly illustrate the strong dependence of reliability and economic
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impactsof the CSPresourcen thedifferentdaily DNI patterns However, we also note
thetrivial contribution ofLOLP andEUE valuesconditionedon clusterR , to the system
overall LOLP and EUE values This is because theverall metric valueis theweighted
average of the results conditioned on each clu§temparedo other three clusters, the
clusterR , has a loweprobabilityand sohas asmaller contribution to theystemoverall
reliability metric valuesThus, theproduct of a metriconditionedon each clustewith the
clusteb probability determine the contribution of each cluster to the ovexalue of the

metric

Table4.3: Seasonal simulation results for fitenmein casewith 1,200MW CSRs

regime
metric summer
R, R, R, R,

LOLP (1074 155 16.4 15.9 19.1 15.9
EUE (MWh) 107 114 109 131 112.4

production
costs (10 9) 259 2.60 259 2.63 261
expectedCO>

emissions 7.33 7.44 7.39 7.38 7.34

(10%Ibs)

In study set ,|we observethe greater contributions dhe CSPresourcedo the system
with significanty diminishng returns as theimstalled capacity increased:or a fixed
installedCSPcapacity seasonal variations aretedin the values of each metric of interest

in the four seasons dhe year. Those variations indicatthat each of the four seasons
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poses different challengesfor system operati®) reliability and economiceffects
Additionally, the simulatiorresults in each of the regimdsemonstratehat regimebased
representation effectively capturése variationsfor different DNI pattern clusters and

their contributions t@achmetric

4.3. Study Set Il: Sensitivity of the TES Capability

For thestudy set Il, we fix thetotal installed CSP capacityin the test system &t,200
MW. Our focus is on the impacts of tAé&Scapabilityas it variefrom 0 houri the base
casel to 6 hours, in 1-hour incrementincreasesThese increments are appliatall the

sites in a unifornway. The base caseetricresults argresentedn Table 44.

Table4.4: Annual metricvaluesfor the study st Il base case

: expectedCO>
metric LOLP (I\ﬁ\L/JVIi) expec(t:igtg(r;)ductlon emissions|ps)
value | 6.4x10"* 135 9.77 x 10° 2.97 x 101

We next consider the sensitivity results for each capability increfdéatpresent in
Fig. 4.6 the percentage changesthe value of each metna.r.t. the base case. As thi&S
capability increases and more thermal energy can be stored duringdlaion hourdor
later conversiomnto electricity the expected value of each metric decredsewsever,the

impacts of each successive cap#épilncrement become smaller and for the reliability
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metrics, an increment abovehduis resuls in a negligbly small changeThis resultis due
to the fact thatthe solar energyn each day isinsufficient for the CSP to take full

advantagef thelargercapability TES

TES capability ( hour)
1 2 3 < 5 6

15
v |roLp V) EUE

Figure4.6: The percentage changeshe expected valuef each metriav.r.t. the base

case value fothe TEScapability sensitivity study

We discussa second sensitivity study OFES capability in which weinvestigate the

impactsof the choiceof location of aCSPinstallation. TheCSPcapacityof each sitas set
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