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ABSTRACT 

 
The global awareness of the impacts of climate change is a key driver of the quick pace 

of development of renewable energy technologies. The concentrated solar plant (CSP) 

technology has emerged as a promising approach to harness solar energy, with several 

implementations under way around the world. Unlike PV and wind resources, a CSP 

allows the deployment of the thermal energy storage (TES), which provides the CSP 

operator the flexibility to produce electricity beyond the sunrise-to-sunset periods. For a 

system with integrated CSPs at distinct locations on its footprint, the effective utilization of 

the TES devices requires a scheduler to optimize the value of the total CSP-produced 

energy for the system. However, the assessment of impacts of CSP resources poses major 

challenges due to the inherent uncertainty, variability and intermittency of direct normal 

irradiation (DNI), which markedly influence the times and the quantities of total CSP 

energy production. The geographic correlations among the multi-site DNI and its intrinsic 

seasonality further complicate the effective quantification of the multi-site CSP variable 

effects in power systems into which they are integrated. Thus, the assessment of CSPs sets 

up an acute need for a practical simulation approach to emulate operations of the systems 

with integrated CSP resources and to evaluate their variable impacts. Such an approach 

must explicitly represent the uncertainty, variability and intermittency of the CSP resources, 

the geographic correlation among them, as well as the flexibility imparted by TES devices. 

The approach also needs to take into account the seasonality of the CSP resources and their 

interactions with the load seasonal changes.  

To address these needs, we construct the multi-site CSP power output model and 

formulate the associated scheduling problem (SP) under some specific TES operational 
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objective in a system with integrated multi-site CSP resources. The power outputs of the 

multi-site CSPs depend not only on the specific details of the CSP configurations and the 

operational schedule, but also on the nature of the solar energy input.  The identification of 

distinct multi-site DNI data in a given season is a key step to obtain the analytic 

representation of the multi-site CSP power outputs. We use statistical clustering techniques 

to classify the distinct data into various groups ï referred to as regimes ï and utilize the 

power output model to probabilistically characterize the multi-site CSP power outputs 

based on the identified DNI regimes. We make detailed use of the conditional probability 

concepts to incorporate the probabilistic model of the multi-site CSP power outputs into 

the extended production simulation tool.  

The major interest in the use of the extended production simulation approach is to 

quantify the impacts of the integration of CSP resources into the system on the variable 

effects over longer-term periods. We modify the Western Electricity Coordinating Council 

(WECC) 240-bus model to construct a test system based on WECC geographic footprint, 

using WECC historical load, DNI and system marginal price data. We present some 

representative simulation results to provide insights into the multi-site CSP impacts on the 

systems over longer-term periods and to illustrate the effectiveness of the extended 

simulation approach. 

The primary contribution of this thesis is to propose an approach capable of quantifying 

the variable effects of the multi-site CSP resources on the system into which they are 

integrated, with explicit representation of the uncertainty, variability and intermittency of 

the solar resources as well as their interactions with the loads and other resources. 
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1. INTRODUCTION  
 

In this thesis, we develop a probabilistic simulation approach for systems with integrated 

concentrated solar plant (CSP) resources with thermal energy storage (TES) to evaluate the 

impacts of the multi-site CSP integration on the system variable effects over longer-term 

periods. In this introductory chapter, we present the background and motivation for this 

research, briefly review the current state of the art, provide an overview of our proposed 

methodology and outline the rest chapters of the thesis. 

 

1.1. Background and Motivation 

    The growing concern over the impacts of global climate change has resulted in 

legislation in numerous jurisdictions to encourage the implementation of renewable 

resources for electricity supply so as to reduce fossil fuel energy dependence and to curtail 

greenhouse gas emissions. For instance, more than half the U.S. states have set ambitious 

goals through their Renewable Portfolio Standards specifying the percentage of the 

electricity that needs to be served by renewable resources by specific target dates [1]. The 

European Union has also established binding targets with the goal to derive 20 % of the 

total European Union energy consumption from renewable energy sources by 2020 [2]. In 

the solar energy technology arena, CSP technology has recently experienced a steady 

growth, with nearly 11 GW of CSP projects under development around the world [3]. 

Typically, a CSP utilizes mirrors with tracking systems to focus direct normal irradiation 

(DNI) to collect solar energy for conversion into thermal energy, which is used in a steam 

turbine or heat engine that drives a generator to produce electricity [4]. Parabolic trough, 
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Solar tower, Dish stirling and Fresnel reflector are the four common forms of the CSP 

technology [4]. Compared to the other two forms, parabolic trough and solar tower CSPs 

are widely commercially deployed around the world [5]. The parabolic trough CSP 

technology uses parabolic mirrors to concentrate solar rays onto the receivers positioned 

along the mirrorsô focal line and the solar tower technology employs heliostats ï flat 

mirrors with dual-axis trackers ï to focus DNI onto a central receiver [5]. Unlike PV 

resources, CSP can make use only of the DNI ï the direct component of the irradiation. 

Furthermore, a salient characteristic of the CSP technology is the deployment of the TES to 

store a fraction of the thermal energy for later conversion. Since the utilization of TES 

allows CSP to produce electricity beyond the sunrise-to-sunset periods and to ensure that 

the power outputs meet the forecasts with a better fidelity, the TES is a definite advantage 

of CSP over the non-dispatchable PV resources. The added flexibility afforded by the TES 

is a key reason for the growing interest in CSP [6], with the global installed capacity of 

around 3,500 MW [3] by the end of 2013, shown in Fig. 1.1. Spain continued to lead the 

world with the 2,304-MW total installed CSP capacity.  The U.S. also installed 410 MW of 

CSP in 2013, increasing its total CSP capacity by more than 80 %. Other countries 

involved in wide commercialization of CSP resources include China, South Africa and 

Australia. Therefore, the implementation of CSPs triggers an acute need for a simulation 

tool to efficiently quantify, over longer-term periods, the variable effects of the power 

systems with integrated CSP resources sited at distinct locations. 
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Figure 1.1: 2010 ï 2014 global cumulative CSP capacity by quarter [3] 

 

However, the randomness in the CSP resources brings major challenges into the 

effective assessment of the influences of the integrated multi-site CSPs on the systems due 

to the inherent uncertain, time-varying nature of the locational DNIs. In Fig. 1.2, we give 

the plots of the daily measured DNI data at Las Vegas, NV, for seven different days of year 

2013. Clearly, the daily DNI shapes on May 1 and July 1 have gradual changes, whereas 

the shapes on Jan. 1 and Feb. 1 change rapidly from minute to minute. We show in Fig. 1.3 

the variations in sunrise, sunset times and the durations of the sunrise-to-sunset periods at 

Ivanpah Dry Lake, CA. We note that the variations exist throughout the whole year. Based 

on the plot in Fig. 1.4 displaying the daily measured DNI data at Las Vegas, NV, and 

Aurora, CO, on April 7, 2014, we also notice the strong locational diversity of daily DNI. 

As a result, these characteristics of DNI affect markedly the times and the quantities of 

energy produced by the CSPs.  
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Figure 1.2: Las Vegas daily DNI measurements for seven different days of year 2013 [7] 

 
Figure 1.3: Ivanpah Dry Lake variations in sunrise/sunset times [8] 
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Figure 1.4: Las Vegas and Aurora daily DNI measurements on April 7, 2014  [3] 

 

    The CSP resources can output electricity whenever either solar energy or thermal energy 

from TES is available. The efficient utilization of the TES requires a scheduler to optimize 

the contribution of the CSPs to displace expensive and polluting conventional generation. 

Thus, the extent to which the aggregated CSP energy production and the loads are 

correlated is an important consideration in the evaluation of the multi-site CSP 

contribution to the power systems. In contrast to the highly uncertain, variable and 

intermittent CSP power outputs, the loads follow well-defined diurnal and weekly patterns 

with higher demand during the weekdays than the weekends and with peaks, typically, at 

similar periods of the weekdays and lower values at nights. We provide in Fig.1.5 the plots 

of the hourly power outputs of the CSPs located in CAISO region in comparison with the 

CAISO hourly loads [9] for March 10ï16, 2014. The plots clearly indicate the weakly 

correlated behavior of the CSP outputs with the loads, which considerably impacts the 

multi-site CSP contribution to the power system where the CSPs are integrated. Due to the 

seasonality of the DNI and the loads, such weak correlations are also strongly seasonally 
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dependent, which further complicates the assessment of the CSP contribution.  Thus, the 

proposed approach must be able to capture the time-varying nature of the CSP resources so 

as to effectively quantify the variable effects of systems into which they are integrated. 

Such a tool needs to explicitly represent the uncertainty sources in loads and resources, as 

well as the interactions among them.  It also needs to take into account the seasonality of 

the loads and CSP resources, in addition to the TES operation scheduling and its impacts 

on CSP outputs. In this thesis, we address those needs with the extension of the 

conventional probabilistic simulation approach to construct a practical and versatile 

simulation tool to emulate the operations of the power systems with integrated CSP 

resources. 

 

Figure 1.5: Plots of the chronological CAISO hourly loads and CSP power outputs for the 

March 10ï16, 2014 [9] 
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1.2. Survey of the State of the Art 

The integration of the CSP resources into the electric grid has become increasingly 

important in recent years with deepening CSP resource penetration. Here, we briefly 

review the literature related to the issues we are dealing with in this thesis. 

The modeling of the DNI and the CSP are the two key issues that need to be addressed 

in the studies of systems with integrated CSP resources. The modelsô complexity depends 

on the nature of the study and the level of detail of the phenomena we want to capture. Due 

to the time dependence of the earthôs and sunôs movements, the temporal effects are 

always taken into account in the DNI modeling. For instance, the actual DNI value is 

computed based on the clear-sky DNI value, which is determined by the time of the year, 

and the atmospheric attenuation factor, which is approximated as a nonlinear function of 

the geographical information [10]. For systems with dispersed CSP resources over a broad 

area, the geographical correlations among the DNI also needs to be considered. In the solar 

irradiation forecasting area, some computationally demanding methods are reported in [11], 

[12] for PV resources. But those methods are only useful for short-term operational 

decision and are inappropriate for longer-term planning.   

 Researchers have developed multiple models to emulate the behaviors of CSP resources. 

Many of those techniques, described in [13], [14], [15], [16], focus on energy analysis and 

consider only the energy production from the CSP resources without the evaluation of their 

impacts on the system into which they are integrated. Although the methods in [17] 

probabilistically represent the load, the controllable resources and the renewable energy 

resources and the interplay among the resources and loads, the utilization of Monte Carlo 

methods is computationally demanding to simulate larger power systems, and 
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modifications are required to simulate the operations of the systems with integrated CSP 

resources. Several comprehensive studies have also studied the impacts of the wind and PV 

resource integration for several U.S. systems [18], based on chronological production 

simulations where the system operations are simulated step by step.  

As a result, the electric power industry recognizes the need for new methods to 

effectively assess the impacts of uncontrollable renewable energy sources [19] and is 

intensified by the deepening renewable energy penetration. 

 

1.3. Scope and Contributions  of the Thesis 

Little work has been done to construct a probabilistic simulation approach to emulate the 

realistic power system operations with integrated multi-site CSP resources, particularly over 

longer-term periods. The major challenge is to incorporate the additional uncertain and 

time-varying effects of CSPs into the approach [20], [21]. Such an approach needs to take 

into account the seasonality of loads and CSP resources, in addition to the TES operation 

scheduling and its impacts on CSP outputs. It also needs to explicitly represent interactions 

among loads and conventional controllable units. We address those needs to develop such 

an approach in this thesis. 

We extend the conventional probabilistic simulation tool to construct a practical and 

versatile approach to effectively assess, over longer-term periods, the variable effects of 

systems with integrated CSPs at different sites. We develop a multi-site CSP power output 

model and formulate a TES scheduling problem (SP) to determine the daily multi-site CSP 

power outputs using the given daily DNI values. For the effective use of the historical DNI 

measurements to simulate the CSP power outputs, we introduce a common time scale to 
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allow the meaningful comparison of daily multi-site DNI data in a specific season and 

deploy statistical clustering techniques to obtain an analytic characterization of the daily 

multi-site DNI to construct the DNI regimes. We use the CSP power output model and the 

regime-based DNI characterization to probabilistically represent the power outputs of CSPs 

at distinct sites. We apply conditional probability concepts to incorporate the probabilistic 

multi-site CSP power output representation into the extended probabilistic simulation 

framework.  

As such, the proposed methodology explicitly represents the uncertainty, variability and 

intermittency of the CSP power outputs, the flexibility imparted by TES, as well as the 

interactions among loads and resources. It also captures the seasonality of the loads and 

CSP resources. The primary application of the extended approach is to evaluate the 

contribution of integrated CSP resources to the power system over longer-term periods. We 

illustrate the effectiveness of the proposed approach using representative results from the 

extensive studies we performed on systems in different geographic regions under a wide 

range of conditions. The studies we discuss provide a realistic assessment of the impacts of 

the multi-site CSP resource integration on the systemsô reliability, economic and 

environmental metrics. 

 

1.4. Outline of the Thesis Contents 

This thesis consists of four additional chapters. In Chapter 2, we focus on the 

probabilistic characterization of the multi-site CSP resources for the simulation purposes. 

We start with the modeling of the development of a deterministic model of the multi-site 

CSP power output. Then, we focus on the DNI data processing for utilization to analytically 
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characterize the multi-site CSP resources. In Chapter 3, we briefly review the conventional 

probabilistic production simulation tool and describe the steps to extend the production 

simulation with integrated CSP resources.  We describe the modified version of the WECC 

test system in Chapter 4 and select some representative results from the extensive studies 

we performed to illustrate the application of the extended probabilistic simulation approach. 

We conclude our contributions and provide directions for future work in Chapter 5. There 

are three appendixes at the end of the thesis. In Appendix A, we summarize the notations 

used in this thesis. We describe in detail the scaling and descaling algorithms in Appendix 

B and C, respectively. 
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2. THE PROBABILISTIC MULTI -SITE CSP RESOURCE 

POWER OUTPUT MODEL  
 

The quantification of the variable impacts, over longer-term periods, of the multi-site 

CSP resources integrated into a power system requires the construction of a multi-site CSP 

power output model, which explicitly represents the uncertainty, intermittency and 

variability of the locational DNI and their impacts on the CSP outputs. We devote this 

chapter to the description of the proposed multi-site CSP generation model and its 

deployment to probabilistically characterize such outputs. 

This chapter contains three sections. In Section 2.1, we derive a solution for an 

optimization problem to determine the multi-site CSP power outputs, using the given DNI 

values. In Section 2.2, we develop the probabilistic characterization of the locational DNIs 

and introduce the notion of multi-site DNI regimes to explicitly represent the salient DNI 

patterns in distinct geographical areas. We use the scaling algorithm to scale the historical 

DNI data onto a common time scale so as to identify the days with similar scaled DNI 

shapes. We introduce the descaling algorithm to convert the scaled DNI samples onto the 

actual sunrise-to-sunset period of the day for simulation purposes. In Section 2.3, we 

analytically characterize the multi-site CSP power outputs and describe the approximation 

of the regime-conditioned distribution functions of the CSP power output random variables 

(r.v.s). We use the notations defined in Appendix A. 

 

2.1. The Deterministic Multi -site CSP Generation Model 

We start this section with a brief description of the behavior of a stand-alone CSP. Many 

conventional and nuclear power plants use heat to boil water to produce high-pressure 



 
12 

 

steam, which expands through the turbine to spin the generator rotor to produce electricity. 

CSP technology extracts the heat from the solar energy and, in a way similar to the 

conventional or nuclear plants, produces steam to generate electricity. A typical CSP set-up 

includes four primary components: collectors that concentrate solar rays, receivers that 

collect and convert solar energy into thermal energy, the TES that stores thermal energy for 

later use, and a power block that converts thermal energy into electricity. We refer to the 

collection of collectors and receivers as the solar field. We summarize in Fig. 2.1 the 

energy flows in a typical CSP. 

 

 

Figure 2.1: Energy flows in a typical CSP 

 

For a power system with integrated CSPs at multiple locations, the power output of each 

CSP depends on the DNI at its location, the specific CSP configuration and the utilization 

schedule of the TES. The aggregated power produced by the CSPs must take into account 

the correlations among the DNIs at the multiple locations. The CSP converts the solar 

energy into thermal energy, used instantaneously either to generate electricity in the 

turbines or to be stored in the TES for later conversion. The utilization of the TES allows 
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the CSP to produce electricity even outside the sunrise-to-sunset periods and to smooth the 

total output of the CSP units. Moreover, the TES deployment enables the CSP operator to 

construct a multi-site TES schedule to meet some specific operational objective, such as 

the maximization of the total energy produced by the multi-site CSPs or the provision of a 

smoothed, aggregated multi-site CSP power output. Such TES schedules lead to the inter-

temporal and spatial coupling of CSP operations at the different locations. We note that the 

thermal energy can be charged into/discharged from the TES without the violation of each 

TESôs maximum/minimum capability. The TES physical capability refers to the maximum 

amount of thermal energy that can be stored in the TES. The storage hour capability is 

expressed as the ratio of the physical capability to the maximum input of power block for 

electricity generation [22]. The charging/discharging rate of each TES device must be 

within its capacity range and the TES device operates at any point in time in only one of its 

operational states ï charge, discharge or idle. A TES device cannot charge and discharge 

simultaneously. Typically, due to the nature of TES, the thermal energy also incurs losses 

over time [23]. Such losses are specified either in terms of % or as a loss rate of energy in 

units of MWh t /h. 

    We construct the power output model of a system with integrated CSPs at S sites to 

emulate the multi-site CSP operations with TES for each day in a simulation period. For 

simplicity, we assume that there is a single CSP at each site s. In the case of multiple CSPs 

at a site s, we construct an equivalent single CSP to represent the aggregated individual 

CSP outputs at the site. We decompose each day into H equal-duration sub-periods. We 

assume that each variable of interest, except the value of stored energy, remains constant 

during a sub-period. Since the energy storage is of critical interest, we adopt the 
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convention that we represent the value of each variable, including thermal energy stored, at 

the end of each sub-period. The system loads and the DNI values for each sub-period are 

assumed given. A sub-period is the smallest, indecomposable unit of time and determines 

the resolution of the simulation. Any phenomenon of shorter duration than a sub-period 

cannot be represented and so is ignored. 

     The instantaneous solar-to-thermal energy conversion at site s is given by the nonlinear 

mapping ( )sb Ö, whose argument is the DNI []d

s hu . Since the plant design of CSP is out of 

the scope of the thesis, ( )sb Ö is not explicitly formulated in this work. We rely on the Solar 

Advisor Model [22] ï  a dynamic model developed by NREL ï  to determine the amount of 

thermal energy collected by the solar field in each sub-period for the geographic, weather 

and time input data of the CSPs. The nonlinear mapping ( )sa Ö, whose argument is the 

thermal energy []d

s hz , is used to instantaneously convert the thermal energy into electricity: 

 

 ( )
[] [] [] []

4 3 2 1

,4 ,3 ,2 ,1 ,0

d d d d

s s s s

s s s s smax max max max

s s s s

d
ss s

h h h h
h

z

z z z z
z c

z z z
L L L L La

å õ
æ ö
æ ö
æ ö
æ ö
ç ÷

è øê ú= + + + +
å õ å õ å õ å õ
æ ö æ ö æ ö æ ö
ç ÷ ç ÷ ç ÷ ç ÷

    (2.1) 

 

Here sc  represents the site s CSP capacity, max
sz  represents the thermal energy input rate 

needed to guarantee that the site s power block produces electricity at its rated capacity and 

,s iL  are function coefficients, i = 0, 1, é, 4 [22]. We utilize the TES status variables []d

s  hv , 

[]d

s hj {0,1}Í  to define the operational state of a TES device. []d

s  hv  ( []d

s hj ) is equal to 1 

when the TES charges (discharges). Both are 0 when the TES device is idle. []d
s he  denotes 

the stored thermal energy at the end of the sub-period h. We represent the TES charging 
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(discharging) efficiency by the constant 
 sh  (

s
m ) (0,1]Í . We also denote the thermal 

energy loss rate, expressed in units of percent per sub-period, by the constant 
s
ɣ . The TES 

physical and operational capability limits are given by min
se  and max

se
* . The sub-period 

charging (discharging) rate []d

s hk  ( []d

s hq ) has values within its allowed 
min max

s s,k kè øê ú 

(
min max

s s,q qè øê ú) range.  

We formulate the scheduling problem (SP) [13], [14], [22], [23], [24], [25], to 

determine the optimal day d operational trajectory of each CSP with TES, using the hourly 

DNI values in the array 1 2

d d d

S ... è øê úu u u . The SP is formulated as a constrained 

optimization problem. The set of constraints comes from the TES physical characteristics 

and operational limits. For the specified TES objective function, each coefficient []d

s
h  g  

can be determined either from historical data or from forecasts or be some given values. 

The detailed statement of the daily SP for day d is:  

[] []
1 1

{

, 1,2,..., , 1,2,... }

     (2.2 )
d d d d d
s s s s s

d d
s s

H S
d d

s s

h s
k h ,v h  ,q h , h  , h ,

hz p, h h H s S

     h h   max                   p                      a

subject to

j e

g
= =

è ø è ø è ø è ø è øê ú ê ú ê ú ê ú ê ú

è ø è øê ú ê ú= =

Dää

 

                                                           
* The physical capability 

max
se  , expressed in the units of MWht, refers to the maximum amount of stored 

thermal energy; the storage capability is expressed as the ratio of the physical capability to maximum input of 

power block for electricity generation. The TES capability, expressed in hour units,  is the ratio of 
max
se  to 

max

sz . 
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For the given DNI values, the solution of the deterministic SP in (2.2) determines the 

optimal multi-site CSP operations and power outputs for each sub-period of day d. Without 

TES, no scheduler is needed since all the thermal energy is instantaneously converted to 

electricity with 

 

       [] []( )( ) d d

s s s s =  h hp ua b                                                 (2.3) 

 

To illustrate the application of SP in our work, we provide in Figure 2.2 the plots of the 

hourly power outputs for day 180 of year 2007 of a CSP located at Midland, Texas, 

without/with a TES device. The CSP parameters are: 0 95
s sh m= = . , 0.03sɣ= , 0min

se = , 

t840 MWhmax
s 0 ore = , t50 MWmin

sz = , t140 MWmax

sz = ,
min max min max

s s s s, ,k k q qè ø è ø=ê ú ê ú

[ ] t0,140 MW=  , 60MWsc =  and ,4 ,3 ,2 ,1, , , ,s s s sL L L Lèê [ ],0 0, 0, 0, 0, 0.3sL ø=ú . Each 
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objective function coefficient is set to 1. 

 

 

 (a) without TES 

 

(b) with 6-hour TES 

Figure 2.2: The CSP power outputs without TES in (a) and with 6-hour TES in (b) for day 

180 DNI (dotted line) in year 2007 at Midland, Texas 
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As shown in Fig.2.2 (a), the CSP energy production at each hour without TES is totally 

determined by its hourly DNI value. When the DNI value is low, the CSP power output is 

low, and when the DNI value is high, the CSP power output is high but cannot violate its 

capacity. In Fig.2.2 (b), the TES stores thermal energy for electricity production and 

mitigates the impacts of DNI intermittency on the CSP energy production. The two plots  

in this example illustrated the capability of SP formulation to emulate the behavior of CSP 

resource without and with TES.  

   The SP forms the basis to characterize the multi-site CSP power outputs. However, for 

each day d, the locational DNI values are highly uncertain and so we represent them as the 

realizations of the DNI random variables (r.v.s) at the S sites. The historical data 

1 2

d d d

S ... è øê úu u u  are indeed the measured values of these r.v.s. As such, the SP solution 

maps these DNI realizations into the realizations of the power output r.v.s. 

1 2

d d d

S ... è ø
ê úp p p . In this way, we probabilistically characterize the multi-site CSP 

power outputs. 

 

2.2. The Multi -site DNI  Model 

As the first step in the probabilistic characterization of the CSP power outputs, we analyze 

the multi-site DNI data obtained from the measurements at the S sites. A single 

measurement is used in each sub-period at each site. We assume that these measurements 

are made simultaneously at all the S sites in each sub-period during each siteôs sunrise-to-

sunset period. For a probabilistic characterization, we use as many data points as we can 

collect. However, the analysis of these data is complicated by the variations in the sunrise-
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to-sunset periods at the S sites. We consider a data set of I days in a given season, with 

possibly several years of data collected. The date of each day i in the data collection is 

known, as are the corresponding sunrise and sunset times at each site s. From the 
i

sM  DNI 

measurements []Ĕi

s mu  taken at equal intervals during the sunrise-to-sunset period in day i, 

we construct the corresponding DNI measurement vector : 

 

                                                        

[]
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1Ĕ

Ĕ Ĕ
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i
s

i

s

Mi i

s s

i

s
i
s

m
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u
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u è ø
é ùê ú

è ø
é ù
é ù
é ù
é ù= Í
é ù
é ù
é ù
é ù
é ùê ú

u                                              (2.4) 

To allow the effective comparisons of the DNI data from different days of a season, we 

introduce a scaling scheme over the sunrise-to-sunset period of each day into the common 

time scale with J equal-duration time-scaled sub-periods. The scaling process maps the 

measurement elements in Ĕi

su into the computed vector i J

sÍy on the common time scale. 

Mathematically, we represent the scaling process as the transformation from 
i
sM  into J  

and express it as: 

                                                

[]

[]

1

Ĕ( )

i

s

i i i Ji
s s s s

i

s

j

J

y

y

y

q è øê ú

è ø
é ù
é ù
é ù= = Í
é ù
é ù
é ù
ê ú

y u
                                            (2.5) 

 

We visualize the time scaling process as shown in Fig. 2.3.  
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Figure 2.3: The time scaling process in day i at the S sites produces the computed DNI 

values for J equal time-scaled sub-periods from sunrise to sunset 

 

We provide in Fig. 2.4 an illustrative example of the application of this scaling process to 

the single Las Vegas, Texas, DNI shapes for year 2013. The detailed steps of scaling 

algorithm are discussed in Appendix B in [26]. 

    We continue with the discussion on the use of the common-time-scaled computed 

variables i

sy . For each day i, we construct the scaled DNI array  

 

 1 2

i i i i S

S

J ... ³è ø= Íê úY y y y                                  (2.6) 

 

using the S vectors i

sy  , s = 1, 2, é, S. i
Y  represents realizations of the daily multi-site 

DNI on the common time scale at the S sites. As shown in Figure 2.5, we collect arrays  

i
Y  for I days and construct the set   

={ : 1, 2, }i i ... , I=YY                                             (2.7) 
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Figure 2.4: The measured and the common time scale with J = 15 winter season hourly 

DNI values in (a) and (b), respectively, for two different days in year 2013 winter season at 

a Las Vegas, Texas location [7] 
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Figure 2.5: Collection of seasonal daily scaled DNI shapes at CSP sites 

 

 

We view the set  Y  to be the sample space of the S-site DNI r.v.s on the common time 

scale.  The set  Y  provides the basis for the identification of similar daily DNI realizations 

via the deployment of statistical clustering techniques. In this way, we classify the samples 

in the setY  into R non-overlapping clusters r
R , r = 1, 2, é, R, as shown in Fig. 2.6. Each 

cluster groups together a subset of similar time-scaled daily multi-site DNI realizations: 

 

                                                     r r¡
=ÅR R , r r¡¸                                            (2.8)    
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1

R

r
r

=

=Y R                                                          (2.9) 

The cardinality | |rR  of each cluster 
r

R , r = 1, 2, é, R, provides the basis to compute the 

cluster probability in terms of the fraction of the I days that belong to the cluster, i.e., 

 

                                                           
| |r

r
I

p =
R

                                                           (2.10) 

 

 

 

 

Figure 2.6: Diagram representation of the clustering process 

 

We refer to the cluster r
R  and its probability rp  as the regime 

r
R  . We represent each 

r
R  by the r

R centroid, to which we refer as the regime r daily DNI pattern.   

    For an example of actual data, we scale and classify 2005 summer DNI data at Abilene, 

Lubbock and Midland in Texas, into four regimes, whose centroids are plotted in Fig. 2.7.  
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Figure 2.7: The centroids of the common-time-scale computed values of the four DNI 

regimes with J = 80, obtained via the k-means clustering algorithm [27], for the summer 

DNI data at the three Texas sites ï Abilene, Lubbock and Midland 

 

prob: 0.49 prob: 0.23 

prob: 0.17 prob: 0.11 
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Figure 2.8: The representation of the sampling of the physical measurements and the 

descaling process for the computation of the day d data at the S CSP sites 

 

We make effective use of conditional probability to probabilistically characterize the 

multi-site CSP resources in terms of the R regime representation [28]. We draw random 

samples from each cluster r
R  to use as inputs into the multi-site CSP power output model. 

The simulation of a specified day d in the given season requires that a sample be 

appropriately descaled into the day d multi-site sunrise-to-sunset periods. We descale the J 

DNI values at each site s in the drawn common time scale sample into the computed DNI 

values 1
T

d d ,b d d ,b d d ,e

s s s s s sh h hu , u , ... , uè øè ø è ø è ø+ê ú ê ú ê úê ú
for the ( 1d ,e d ,b

s sh h- + ) equal-duration 

sub-periods in the day d sunrise-to-sunset period at each site s. We represent the descaling 
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process by the transformation d

sl . We summarize in Fig. 2.8 the sampling and descaling 

step. 

To maintain consistency of the midnight-to-midnight representation of the loads, we use 

the components of the descaled vector 1
T

d d ,b d d ,b d d ,e

s s s s s sh h hu , u , ... , uè øè ø è ø è ø+ê ú ê ú ê úê ú
to 

construct the augmented daily vector for the entire H-sub-period day with  
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é ù= Í
é ù
é ùè øê úé ù
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                                             (2.11) 

where d

su  represents the day d site s DNI realizations from midnight to midnight, with: 

 

                                 [] 0d
s hu =  for , ,[1 1] [ 1 ]d ,b d ,e

s sh h h H-Í +                                 (2.12) 

 

To illustrate the descaling and the augmented vector construction, we provide in Figure 2.9 

the plots of the common time scale DNI data and the daily descaled DNI for day 165 of 

year 2013 at Austin, Texas. The vector d

su  is simply a realization of the r.v. vector: 
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è ø
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Figure 2.9: The common time scale with J = 20 values of a sample we used to construct the 

DNI vector for  day 165 of year 2013 at Austin, Texas in (a) with the corresponding values 

of the daily descaled DNI vector (H = 24) in (b) [7] 
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We denote the realization of the r.v. vector d

sU  conditioned on the cluster rR , i.e.,  d

s r
U , 

by the augmented vector d
s r

u . We construct the DNI r.v. array d
U  from the S vectors: 

 

1 2

d d d d

S

H S ... ³è ø= Í
ê ú

U U U U                              (2.14) 

 

and the corresponding DNI r.v array  conditioned on cluster 
r

R : 

 

             1 2

d d d d

S
r r

H S

r r
 ... ³è ø= Í

é ùê ú
U U U U                        (2.15) 

 

For given DNI values, the solution of the SP that maximizes the objective function in 

(2.2a) in (2.2) is the optimal multi-site CSP power outputs at the S sites. In particular, for a 

given sample of conditioned multi-site DNI r.v.s ï 1

d

r
U , 2

d

r
U , é, 

d

S
r

U  , the solution 

obtained the corresponding optimal sample of conditioned multi-site CSP power output 

r.v.s ï 1

d

r
P , 2

d

r
P , é, 

d

S
r

P , which are conditioned on cluster rR . We depict the 

mapping process in Figure 2.10 to indicate that the deterministic SP solution maps each 

sample into the conditioned optimal outputs. In this way, we obtain the multi-site CSP 

power output r.v. sample space, which we can deploy to approximate the multi-site CSP 

resource power output r.v.s cumulative distribution function (c.d.f.). 

 Thus, the SP together with multi-site DNI clusters provides the probabilistic 

characterization the multi-site CSP resource power output r.v.s . We devote the next 

section to the probabilistic characterizations of the CSP power outputs based on SP and the 

multi-site DNI model. 
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Figure 2.10: Mapping from the multi-site DNI r.v. sample space into the multi-site CSP 

power output r.v. sample space using the SP 

 

2.3. The Probabilistic Characterization of the CSP Power Outputs 

The regime-based DNI model provides the basis to construct the probabilistic model of 

the CSP power outputs. The SP solution for each input DNI sample drawn from a cluster 

r
R determines the corresponding conditioned CSP power output realization. We represent 

such a conditioned realization by the array d

r
P : 

 

                               1 2

d d d d

Sr r r r

H S
... 

³
Íè ø=

é ùê ú
P p p p                                  (2.16) 

 

Mathematically, 
d

r
P   is the corresponding realization of the multi-site CSP power output 

r.v. array d
P  conditioned on cluster r

R , where: 
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1 2

d d d d

Sr r

H S

r r
... 

³
Íè ø=

é ùê ú
P P P P                                  (2.17) 

 

The computation of the day d multi-site CSP power output requires that we sample from 

each cluster 
r

R , r = 1, 2, é, R, and determine the corresponding conditioned realization 

of d

r
P . We use the conditioned realization of the power output for each sample drawn  

from a cluster r
R  to construct the subspace of the sample space of d

P , with multiple 

samples from that particular cluster rR .  We systematically repeat such a procedure for 

each regime 
r

R and obtain the R subspaces for each conditioned d

r
P , r = 1, 2, é, R. 

The sample space of dP  is simply the union of the non-overlapping subspaces that we 

construct for the repeated sampling from the R clusters. 

    We compute the total aggregated conditioned power outputs of the CSPs at the S sites 

for each sub-period h to be: 

 

                   
, 1

S
d d d

sh r r rs=

h hp p p
ä ä

è ø è øê ú ê ú= =ä                                        (2.18) 

 

We then construct the daily power output vectors: 

 

                                      
1

S
d d

s rr s=
ä
=äp p                                                   (2.19) 

 

For each sub-period h, we approximate the c.d.f. ( )d

h , r
P

F
ä

Ö and its moments by using the 

sample space of  d

r
P . In terms of the conditional probabilities, we state the c.d.f. 
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Also, for the day d, we approximate the joint c.d.f. ( ... )

r

d 
F , , ,
ä

Ö Ö Ö
P

 for the H hourly values 

of d

rS
P ï the sum of the conditioned r.v.s. 

1

d

r
P , 

2

d

r
P , é, d

S r
P  , which we use to 

compute the ( ... )

r

d 
F , , ,
ä

Ö Ö Ö
P

 with 

 

1

1 2

1 2

( ... ) 

= ( ... )

1, 2, ...

 

{ }

                                 (2.21)
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The probabilistic characterization of the multi-site CSP resource power outputs in (2.16) 

ï (2.21) is the foundation of the extension of the conventional probabilistic production 

simulation approach to represent the multi-site CSP power outputs in a system with 

integrated CSPs.  
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2.4. Summary 

This chapter provides a description of the construction of a probabilistic model for the 

multi-site CSP resource power outputs, using sets of seasonal DNI data at the S sites with 

CSPs. We first formulate an optimization problem used to compute the multi-site CSP 

power outputs.  Then we scale the seasonal daily DNI data into a common time scale so 

that we are able to compare the data of different days in a meaningful way. We classify the 

time-scaled DNI data into several clusters. For simulation purposes, we de-scale the 

samples drawn from each cluster and use them to compute the corresponding multi-site 

CSP power outputs for the day of interest. We use these samples to approximate the 

conditional distributions of the CSP output random variables. 

In the next chapter, we provide a brief review of the conventional probabilistic 

production simulation approach and describe the steps needed to incorporate the multi-site 

CSP output model into the probabilistic production simulation framework.  
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3. THE EXTENSION OF PROBABILISTIC SIMULATION 

APPROACH 
 

The probabilistic simulation approach is widely deployed in the evaluation of the 

expected energy production by each unit over a specified study period, the reliability 

metrics, the expected system production costs, the expected greenhouse gas emissions and 

any other metric of interest to measure the variable effects. The conventional probabilistic 

simulation is a computer-based emulation of the power system supply- and demand-side 

resource operations to assess how effectively the demand is met over a specified period. 

However, the conventional approach cannot represent time-varying resources such as CSPs. 

In this chapter, we review the probabilistic production simulation tool basics and discuss 

the necessary modifications to incorporate the model developed in chapter 2 to represent 

the integrated multi-site CSP resources. We also discuss some implementation aspects of 

the extended simulation approach. 

 

3.1. Review of the Conventional Probabilistic Production Approach 

To realistically emulate the operation of a power system, we decompose a multiple-year 

study horizon into W non-overlapping simulation periods. We specify each simulation 

period in such a way that no changes in the resource mix, unit commitment and the policy 

environment occur during its duration. Such changes may occur, however, in subsequent 

periods. We denote the index set of sub-periods in each simulation period by T : 

 

={1, 2, ..., }TT                                                    (3.1) 
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For concreteness in this description, we choose a week as the simulation period and one 

hour as the smallest, indecomposable unit of time with T  = 168 and H = 24. We illustrate 

the general structure of our scheme in Fig. 3.1. We note that the structure of the scheme is 

sufficiently general to accommodate any desired granularity.À 

 

Figure 3.1: The general structure of the scheme based on the partitioning of the study 

period into W simulation periods, with each simulation period partitioned into T simulation 

sub-periods and each sub-period equal to the smallest, indecomposable unit of time 

 

The load and resource characteristics, as well as the unit commitment in each simulation 

period are inputs into the simulation. Based on the chronological load data for the given 

simulation period, we develop a probability distribution to represent the load r.v. L . To do 

so, we ignore the time information and rearrange the loads in order of decreasing values 

from the highest to the lowest and construct the load duration curve (l.d.c.). The reordered 

load values contain no temporal information and all the inter-temporal effects are also lost 

in this representation. As an example, we plot in Fig. 3.2 the ERCOT chronological load 

data for Monday, July 25, to Sunday, July 31, 2011. We display in Fig. 3.3 the 

                                                           
Ϟ With the consideration of the thermal dynamic process, we adopt the granularity no less than 15 minutes as 

one sub-period. If, however, granularity smaller than 15 minutes is chosen for the simulation, the 

modifications of the SP are needed to take into account the dynamics of the thermal processes. 
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corresponding l.d.c.. We can identify the maximum/minimum load values from the l.d.c. 

during the simulation period. We interpret the l.d.c. as the complement of the c.d.f. of L . 

Consider an arbitrary point ( ,̂ h ) on the l.d.c.. We also interpret such a point as the 

statement that the load exceeds the value of ̂  for h hours during the T hours of the 

simulation period. The normalization of the time provides the fraction h/T, which we view 

to be the probability that the load exceeds the value  ̂in the simulation period. Thus, we 

use the inverted l.d.c. 
  

L  to analytically characterize c.d.f. ( )LF Öof L : 

 

 ( ) ( ) 1 ( ) 1 ( )
  LProb L Prob L F= ² = - ¢ = -L                        (3.2) 

 

 

 

Figure 3.2: The ERCOT system chronological hourly load from Monday, July 25, to 

Sunday, July 31, 2011 [18] 
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Figure 3.3: The l.d.c. for Monday, July 25, to Sunday, July 31, 2011. 

 

A unit generates energy to serve the load, once it is committed and dispatched [29].  In 

each simulation period w, w
E  is the index set of the committed conventional units and can 

be viewed as a subset of the E ï the set of conventional generation units, where: 

 

={ , 1, 2, ..., }i i =E E| |                                               (3.3a) 

 

              ={ :1 and unit is committed in simulation period }w i i i w¢ ¢E E| |          (3.3b) 

 

We model the availability of each controllable unit by its multi-state available capacity r.v. 

[29]. Each unit may be represented by a single-block or a multi-block model. The blocks of 

the committed units in w
E  are loaded to meet the load in the order of their non-decreasing 

marginal prices during the period w. In this way, we construct the period w loading order 
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of committed units and we refer to this order as the loading list. The probabilistic 

simulation approach uses the notion of the equivalent load r.v. kL ï the remaining 

uncertain load served by the blocks in the loading list after the first 1k-  blocks are loaded. 

The recursive relation 

 

1 0k k k with =L L A L L -= -                                                (3.4) 

 

computes the equivalent load r.v. kL  iteratively, where kA  represents the available 

capacity r.v. of the loading block k. We assume that each unit is independent of each other 

unit and the load, and compute the 1  
L , 2  

L , é functional values rapidly by convolution 

to evaluate the variable effects of the power system in each simulation period. Here, 
  k

L is 

the inverted l.d.c. corresponding to the equivalent load r.v. kL . As an example, we use 

1  k-
L  to determine the expected energy production ke of loading block k over the 

simulation period: 

 

1

1
( )

k

k

  k

C

k

C

de

-

-
=ñL                                                 (3.5) 

 

with 

 

1

1, 2, ...
k

k q

q

C c k
=

= =ä                                        (3.6) 

where qc is the capacity of the block q. 

Given the heat rate and fossil fuel data for each loading block q, we can compute the 

block k expected production costs and emissions during the simulation period. In addition, 
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the production simulation also provides, as a byproduct, the values of the system reliability 

metrics of interest. Since the l.d.c. of the equivalent load r.v. after all the blocks are loaded 

provides the complement of the c.d.f. of the load that remains unserved, we can derive the 

relations to determine the loss of load probability (LOLP 
w) and the expected unserved 

energy (EUE 
w)  by: 

 

( )w w

w

K K
LOLP C=L                                              (3.7) 

 

( )w

wK

w

K

C

EUE d

+¤

=ñL                                             (3.8) 

 

where K 
w is the number of blocks loaded during the simulation period w. We make use of 

(3.7) and (3.8) in the evaluation of the metrics of interest. 

 

3.2. Reexamination of the Load Representation 

   To mesh the probabilistic simulation framework with the probabilistic model of the 

multi-site CSP power outputs, we need to reexamine the load sample space. In each weekly 

simulation period, we collect the H daily load values to construct the load r.v. sample 

space of the T load values, where T is the total number of sub-periods in the simulation 

period. We use the aggregated CSP power output r.v. 
d

h
P
ä

 in each sub-period h to meet 

part of the corresponding load of the sub-period. To do so, we partition the load r.v. sample 

space into H non-overlapping subsets, with each subset containing realizations of the load 

r.v. conditioned on the sub-period h. Consequently, we may view the sample space as a 



 
39 

 

matrix with D rows and H columns. Let 
1 2
, , ... ,

H
T T T  be the H subsets of 

 
T  , with 

each subset 
h

T  being a subset of the indices, one for each day, of the sub-period h  for 

the D  days in the simulation period w . Thus, we write 

 

 

1

H

 h
h=

=T T                                                        (3.9) 

 

     
h h

for h h
¡

¡=Å ¸T T                                        (3.10) 

 

 

Figure 3.4: The load representation for the partitioned r.v. sample 

 

We use the samples in the set { , }j h
jÍT  to approximate the c.d.f. ( )

h
L 

F  of the load 

r.v. conditioned on the sub-period h.  We summarize in Fig. 3.4 the visualization of the 
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load r.v. sample space partition we use in this analysis. Since each of the H non-

overlapping subsets has an equal probability 1/H, the application of conditional probability 

allows us to restate the c.d.f. ( )LF Öof L in terms of the conditioned c.d.f.s of 
h

L . Thus,  

1

1

( )   { } 

= { }

= { } { }

1
= ( )                                        (3.11)

|
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h

H

L 
hh

in each sub - period h

hour h h

F = Prob L
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Pro our hb L Prob

F
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=

¢

¢

¢ä
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Under the assumption that each unit has uniform characteristics during the entire 

simulation period, we express the c.d.f. ( )
 k

LF of the equivalent load r.v. 
k

L  similarly in 

terms of the conditioned c.d.f.s of 
k

h
L  . In this way, 

 

  
1

1
( ) { }= ( )  

k h
k

H

L k L  h

F = Prob L F
H =

¢ ä                                  (3.12) 

 

where ( )
k h

L
 

F  denotes the probability of the equivalent load r.v. conditioned on the sub-

period h. We restate all the probabilistic simulation relations in terms of the conditional 

probability with the conditioning on the sub-period h of each day in the simulation period. 

 



 
41 

 

3.3. Extension of Production Simulation with Time-Dependent Resources 

We incorporate the representation of the multi-site CSP resource impacts by making use 

of the load sample space partitioning in combination with the regime-based multi-site CSP 

power outputs. The multi-site CSP power output r.v. meets some of the demand, with the 

conventional controllable resources serving the other part. We use the term ñcontrollable 

loadòC  to represent the remaining ñnetò load r.v. that is met by the conventional units, 

explicitly taking into account the output provided by the CSPs. We use the conventional 

assumption that the load and multi-site CSP power output r.v.s are statistically independent. 

We approximate the c.d.f. 
,

( )
C 

h r
F Ö of the controllable load r.v. conditioned on the cluster 

r
R  for the sub-period h making repeated use of the convolution operation. We then restate 

the c.d.f. 
,

( )
C 

h r
F Ö of the controllable load r.v. conditioned on the cluster r

R  as: 

 

1
,

|
1

{ }( ) = ( )  
h

H

rC C 
r h r

Prc  cobF = FcC
H =

¢ äR                               (3.13) 

 

Once the approximation of ( )
C 

r
F Ö for a regime r is obtained, the probabilistic simulation 

for the controllable resources proceeds exactly as under the conventional case. The 

expected value of each metric of interest in a simulation period is evaluated as the cluster-

probability-weighted average of the conditional expected values. 

For the entire study period, the expected value of each metric, such as a reliability index, 

an economic measure or an environmental emission value, is computed as the sum of the 

expected values in each simulation period.  
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3.4. Summary 

In this chapter, we present a review of the probabilistic production simulation 

framework for systems whose resource mix is constituted only of controllable units. We 

devote the rest of this chapter to discuss the extension of its capability to explicitly include 

the representation of CSP resources.  We modify the load representation so that it is 

compatible with the regimes-based CSP power probabilistic representation developed in 

Chapter 2. In the next chapter, we discuss the application of the extended probabilistic 

simulation approach to assess the variable effects of systems with integrated CSP resources. 
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4. ILLUSTRATIVE SIMULATION RESULTS  

The extended probabilistic approach has a wide range of applications, including resource 

planning, production costing issues, environmental assessments, reliability and policy 

analysis. We carried out extensive simulation studies with the extended probabilistic 

approach and devote this chapter to presenting representative results that illustrate the 

capabilities of the approach to quantify the variable effects of a system with integrated 

multi-site CSP resources. We start out with a description of the test system characteristics 

used in the representative studies discussed here. We present the results of the four study 

sets selected for the discussion in this chapter. In the study set I, we focus on the 

investigation of the impacts of deepening CSP penetration. We discuss the impacts of the 

TES capability in the study set II. The study set III results provide insights into the 

capability of the multi-site CSPs to replace the retired conventional generation capacity. 

We analyze the impacts of two different TES operational objectives on the simulation 

results for the study set IV. 

 

4.1. The Test System and the Simulation Parameters 

We use a single test system for the four study sets reported in this chapter. In our 

discussion, each simulation study is considered for the year 2004 so as to focus on the 

nature of the results and the insights they provide. The test system is a modified version of 

WECC 240-bus system [30]. The test system represents only the resources and loads 

without the network. We scale the 2004 WECC load data so that the annual peak load is 

81,731 MW. The test system has 902 conventional generation units with a total nameplate 

capacity of 96,443 MW and we explicitly represent the unit maintenance schedule. The 
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reserves are maintained at 15 % level throughout the year. We use the outage probability 

and the economics of every block for each conventional unit from [30]. The fuel costs and 

CO 2 emission rate data are also those given in [30]. Each case study considers CSPs with 

equal capacity installed at six selected sites. The six sites selected for the CSPs are all on 

the WECC footprint, namely Barstow, Blythe and Lancaster in California, Lovelock and 

Mercury in Nevada, and Tucson in Arizona. Each CSP uses the parabolic trough structure 

with a solar multiple of 2. We use historical DNI measurement data with M = 24 from 

2002 ï 2004 [31] to identify the DNI clusters for our studies. We assume that each TES is 

operated to maximize the total energy production of the aggregated CSP units. For the SP 

objective function, each coefficient []d

s
 hg  is assumed to be 1.  

We partition the 52 weeks of the study year into four seasons and use one hour as the 

smallest indecomposable unit of time for each day with H = 24. Given the importance of 

the J value in the DNI pattern representation, the J choice involves a trade-off between the 

accuracy of the solar pattern representation and the computational burden.  We determine 

the J value from a sensitivity study over the [0,100] interval. For each value of J, we scale 

and then descale DNI data and evaluate the average absolute difference between the 

descaled DNI data and its measured value expressed in per unit of the measured DNI value.  

For the specified M and H values, we plot in Fig. 4.1 the average error for the range of 

study for J. As J increases, the average error decreases. In our simulations, we use J = 80 

to obtain an average error at or below 1 % level for the equal-duration common time-

scaled sub-periods in the CSP model. 
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Figure 4.1: The average error as a function of J 

 

 

Figure 4.2: The centroids (J = 80) of DNI regimes for R = 3, using k-means clustering 

algorithm for the autumn season at the six sites selected for simulation 

  

An important parameter to be determined is the number of regimes to use in the DNI 

representation. To gain some insights into the value of R, we scale the 2002 ï 2004 data 
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and classify them into a specified number R of clusters, with R = 3, 4, 5. We display the 

corresponding results for the autumn season in Fig 4.2 ï 4.4, respectively. We plot the 

patterns of each regime and provide the probability of each regime for each R we choose. 

We note that for the autumn season at least one regime has a probability smaller than 0.10 

when R exceeds 4, and that there is one dominant regime with probability higher than 0.6 

when R is less than 4.  Based on these results, we can obtain an acceptable approximation 

of the DNI uncertainty with R = 4. All the studies discussed in this chapter are obtained 

with R = 4 for each season. 

 

 

Figure 4.3: The centroids (J = 80) of DNI regimes for the autumn season with R = 4 
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Figure 4.4: The centroids (J = 80) of DNI regimes for the autumn with R = 5 

 

4.2. Study Set I: Impacts of the Deepening CSP Penetration 

    In the study set I, we use the test system with varying amounts of the total installed CSP 

capacity from 0 MW ï the base case ï to 3,000 MW in 600-MW increments with a 1-hour 

TES capability at each CSP. We start out the discussion of the results of study set I with the 

base case for the supply system consisting only of the controllable conventional resources. 
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We summarize in Table 4.1 the values of the reliability metrics ï the LOLP and the EUE ï 

and the expected production costs and the CO 2 emissions for the single year period.  

Table 4.1:  Simulation results for study set I base case  

 

metric LOLP 
EUE 

(MWh) 

expected production 

costs ($) 

expected CO 2 

emissions (lbs) 

value 1.12 × 10 
ï 3 253 1 × 10 

10 3 × 10 
11 

 

    We next discuss the sensitivity cases with increments of the CSP capacity. For each 

case, we evaluate metrics of interest and their percentage changes w.r.t. the base case 

results. We display the results in Fig. 4.5. The LOLE and EUE reductions reflect the 

reliability improvements in the system due to the multi-site CSP integration. The results 

clearly indicate the diminishing returns in the reliability improvements: although the CSP 

integration with higher total capacity further reduces the LOLP and the EUE values, the 

reliability improvement of each successive capacity increment has smaller impacts than the 

preceding increment. In addition, we note that the annual expected production costs and 

CO 2 emissions decrease almost linearly as the total CSP capacity increases. Such results 

are reasonable since every additional unit of the CSP generation displaces the energy 

produced by the more costly and polluting units. The production costs and CO 2 emissions 

of each conventional unit are assumed to be linearly dependent on the unit energy 

production and so the annual expected production costs and CO2 emissions behave 

accordingly. Similar behavior in reliability improvements, costs and CO 2 emissions is also 

evident in the wind and PV resource integration studies performed earlier [29], [26]. 
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Figure 4.5: The annual value of each metric with the corresponding percentage change 

w.r.t. the base case value for the CSP penetration sensitivity study for installed CSP 

capacity from 0 ï 3,000 MW 

 

   We focus on the simulation results for four seasons for the case with 1,200-MW CSP 

resources and examine the relationship of the annual metric values to their seasonal 

components. In Table 4.2, we give the simulation results for the four seasons and also for 

the entire year. Since summer has the highest energy demand, the LOLP in the summer is 

almost 100 times of that of the spring season. The expected CO 2 emissions in the winter 

are 10  % lower than those in the summer. These simulation results are representative of the 
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general nature of these metrics and explicitly demonstrate the seasonal variations of 

reliability and economic impacts of the integrated CSP resources and the relative influence 

of each season. 

Table 4.2:  Seasonal and yearly values of the metrics of interest for the case with 1,200-

MW CSP capacity 

 

metric 

season 
entire 2004 

year spring summer autumn winter 

LOLP (10 
ï 4 ) 0.16 15.9 5.23 2.92 6 

EUE (MWh) 1.8 112.4 8.2 0.6 123 

production 

costs (10 9 $) 
2.43  2.60 2.47 2.24 9.74 

expected CO 2 

emissions 

(10 
10 lbs) 

7.91 7.34 7.72 6.60 29.6 

 

We next explore the impacts of DNI regime in the evaluation of the metrics of interest. 

We display in Table 4.3 the metric values for the summer season conditioned on the cluster 

r
R , r = 1, 2, 3, 4, together with the regime probability weighted average. From these 

results, it follows that the metrics have markedly different contributions for each regime to 

the metrics in the summer period. For instance, the LOLP conditioned on cluster 4R   is 

about 23 % larger than the LOLP conditioned on cluster 1R . This is because those daily 

DNI patterns in cluster 1R represent the DNI pattern with the higher solar energy content. 

The simulation results clearly illustrate the strong dependence of reliability and economic 
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impacts of the CSP resources on the different daily DNI patterns. However, we also note 

the trivial contribution of LOLP and EUE values conditioned on cluster 4R   to the system 

overall LOLP and EUE values.  This is because the overall metric value is the weighted 

average of the results conditioned on each cluster. Compared to other three clusters, the 

cluster 4R  has a lower probability and so has a smaller contribution to the system overall 

reliability metric values. Thus, the product of a metric conditioned on each cluster with the 

clusterôs probability determines the contribution of each cluster to the overall value of the 

metric. 

Table 4.3:  Seasonal simulation results for the summer in case with 1,200-MW CSPs 

metric 

regime 

summer 
1

R  
2

R  
3

R  
4

R  

LOLP (10 - 4) 15.5 16.4 15.9 19.1 15.9 

EUE (MWh) 107 114 109 131 112.4 

production 

costs (10 9 $) 
2.59 2.60 2.59 2.63 2.61 

expected CO 2 

emissions 

(10 
10 lbs) 

7.33 7.44 7.39 7.38 7.34 

 

 

In study set I, we observe the greater contributions of the CSP resources to the system 

with significantly diminishing returns as their installed capacity increases. For a fixed 

installed CSP capacity, seasonal variations are noted in the values of each metric of interest 

in the four seasons of the year. Those variations indicate that each of the four seasons 
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poses different challenges for system operations, reliability and economic effects. 

Additionally, the simulation results in each of the regimes demonstrate that regime-based 

representation effectively captures the variations for different DNI pattern clusters and 

their contributions to each metric. 

 

4.3. Study Set II: Sensitivity of the TES Capability  

For the study set II, we fix the total installed CSP capacity in the test system at 1,200 

MW. Our focus is on the impacts of the TES capability as it varies from 0 hour ï the base 

case ï to 6 hours, in 1-hour increment increases. These increments are applied at all the 

sites in a uniform way. The base case metric results are presented in Table 4.4. 

 

Table 4.4:  Annual metric values for the study set II base case 

 

metric LOLP 
EUE 

(MWh) 

expected production 

costs ($) 

expected CO 2 

emissions (lbs) 

value 6.4 × 10 
ï 4 135 9.77 × 10 

9 2.97 × 10 
11 

 

 

We next consider the sensitivity results for each capability increment. We present in    

Fig. 4.6 the percentage changes in the value of each metric w.r.t. the base case. As the TES 

capability increases and more thermal energy can be stored during the insolation hours for 

later conversion into electricity, the expected value of each metric decreases. However, the 

impacts of each successive capability increment become smaller and for the reliability 
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metrics, an increment above 4 hours results in a negligibly small change. This result is due 

to the fact that the solar energy in each day is insufficient for the CSP to take full 

advantage of the larger capability TES.  

 

 
 

 

 

 

 

Figure 4.6: The percentage changes in the expected value of each metric w.r.t. the base 

case value for the TES capability sensitivity study 

 

 

We discuss a second sensitivity study on TES capability in which we investigate the 

impacts of the choice of location of a CSP installation. The CSP capacity of each site is set 








































