EFFECTIVE UTILIZATION OF FLYWHEEL ENERGY STORAGE (FES) FOR FREQUENCY REGULATION SERVICE PROVISION

BY

MIRAT TOKOMBAYEV

THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2014

Urbana, Illinois

Adviser:

Professor George Gross
ABSTRACT

The deeper penetration of variable energy resources (VERs) in the form of wind farms and solar photovoltaic systems has impacted power system operations and planning in many ways. Today, renewable energy resources constitute a significant portion of new power generation capacity additions. As the outputs of renewable generation resources are function of the climatic conditions at their geographic locations – and over which the resource operators have no control – and the current renewable technologies provide only limited controllability, the renewable outputs are subject to, by and large, uncontrollable, rapid and uncertain changes. Such volatility in the renewable outputs, that may also include intermittent behavior, can affect power systems operations significantly. Indeed, the continual variability impacts introduce new complications due to their interactions with the impacts of the continuously changing loads in the system. In particular, such interactions may exacerbate the challenge to provide the critical function to maintain the supply-demand balance around the clock. Given the limited controllability over the renewable resources, system operators have no choice but to impose additional burdens on the controllable conventional generation resources. Many of these resources, however, have rather slow response times and limited ramping capabilities resulting in less than ideal performance in the provision of the second-by-second supply-demand balance – the so-called frequency regulation service. This service, also known by the technical term of automatic generation control (AGC), is absolutely essential to maintain the frequency of the power system at its nominal value, which is 60 Hz in the United States and 50 or 60 Hz in other countries.

The recent advancements on the storage technology front indicate great potential in terms of applications to power systems for frequency regulation service. A particularly exciting development is the integration into the power system of storage devices known as flywheel
energy storage (FES). In this thesis, we investigate the effective utilization of FES for frequency regulation service provision via the competitive markets for such service.

The FES utilization in frequency regulation service provision presents a number of challenges. A FES unit has a relatively low energy-to-power ratio, a situation that implies a clear limitation to its ability to provide frequency regulation over longer periods of time in only a single direction. Such a limitation, consequently, constrains the amount of service the FES unit can offer. As the frequency regulation service is procured in the competitive environment through market mechanisms, the FES physical limitations and the uncertainty associated with the second-by-second requirements of the system make the formulation of appropriate offer strategies for a FES unit a challenging task. To address all these challenges, we have developed a comprehensive approach to effectively utilize the FES to provide guaranteed frequency regulation service to the grid. We prepared this thesis to discuss the development of the approach and describe its application to various studies. We demonstrate the capability of the developed approach and quantify the improved performance over existing techniques through various case studies using actual 2011 AGC signal and price data from two large systems – the CAISO and the PJM. The representative results clearly indicate that the proposed approach generates offer strategies that result in better utilization of FES to provide guaranteed frequency regulation service.
To my family
ACKNOWLEDGMENTS

I would like to thank my adviser, Professor George Gross, for the guidance and support he gave me throughout my studies at the University of Illinois at Urbana-Champaign. His willingness to provide help and a critical eye have taught me to strive for continuous improvements.

I also thank my colleagues and friends: Kai, Yannick, Isaac, Ti, Ada, and Marco with whom I spent a lot of time during the past two years and whose lively discussions have made a valuable contribution into my research. I would also like to thank all the students, faculty and staff in the Power and Energy Group for their constant support and encouragement.

Finally, nothing would have been possible without the love of my family, who has always supported me during my stay in the United States.
TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ..1
 1.1 Motivation and Background ...1
 1.2 The Salient Aspects of AGC Service Provision by Storage Technology5
 1.3 Review of the State of the Art in Storage Utilization for Frequency Regulation6
 1.4 Scope and Contribution of the Thesis ...10
 1.5 Outline of the Thesis ..11

CHAPTER 2 MODELING OF FREQUENCY REGULATION SERVICE AND
 CONSTRUCTION OF ANALYTIC FRAMEWORK ..13
 2.1 The Three-Layer Framework of the Regulation Service Provision13
 2.2 The FES Modeling for the Frequency Regulation Service Provision14
 2.3 Layer for Offer Formulation into the Hourly DAMs ..19
 2.4 Layer for Additional Offer Formulation into RTMs ...20
 2.5 Summary ..23

CHAPTER 3 THE FES OFFER STRATEGY FORMULATION ..25
 3.1 Offer Regulation Service Strategy Formulation into the DAMs26
 3.2 DAMs Regulation Offer Strategy Formulated as a Linear Program32
 3.3 Offer Regulation Service Strategy Formulation into the RTMs34
 3.4 Summary ..42

CHAPTER 4 CASE STUDIES ...43
 4.1 Scope and Nature of the Simulation ...44
 4.2 Case Studies Results and Sensitivity Analysis ..45
 4.3 Summary ..54

CHAPTER 5 CONCLUSIONS ...55
 5.1 Summary ..55
 5.2 Directions for Future Work ...57

APPENDIX A. NOTATION USED IN THE THESIS ..59

APPENDIX B. THE PROCEDURE TO CALCULATE THE PAYMENT FOR FES
 REGULATION SERVICE PROVISION ..64

APPENDIX C. OVERVIEW OF THE SIMULATION APPROACH ..70

REFERENCES ..72
CHAPTER 1

INTRODUCTION

This thesis deals with the utilization of flywheel energy storage for frequency regulation service provision. In this chapter, we start by discussing the motivation and background of our research to set the stage for the work presented in the thesis. We provide a brief summary of the frequency regulation service provision by storage technology and review the prior work in this area. Then, we present the scope and the contribution of the work. We end by outlining the contents of the chapters that follow.

1.1 Motivation and Background

The deeper penetration of variable energy resources (VERs), such as wind and solar photovoltaic, has significantly impacted power systems operations and planning. Today the renewable resources already constitute a significant portion of new power generation capacity additions. As the outputs of renewable generation resources are determined by climatic conditions at their locations and over which the resource operators have no control, and the current renewable technologies provide only limited controllability, the renewable outputs are
subject to rapid and uncertain changes. Such volatility in the renewable outputs, that may also include intermittent behavior, can affect power systems operations significantly and introduce additional complications to the impacts of the continuously changing loads in the system. In order to maintain the supply-demand balance around the clock, system operators must impose additional burdens on the controllable generation resources. Many of these resources, however, have rather slow response times and limited ramping capabilities. The recent advancements on the storage technology front have great potential in terms of applications to power systems for the second-by-second supply-demand balance – the so-called frequency regulation service. This service, also known by the technical term of automatic generation control (AGC) is absolutely essential to maintain the frequency of the power system at its nominal value. A particularly exciting development is the integration into the power system of storage devices known as flywheel energy storage (FES). These are compact structures that can range in output from 250 kW to 20 MW with a storage capability of up to 5 MWh. In this thesis, we investigate the effective utilization of FES for AGC service provision in the context of the competitive markets for such service.

The recent studies [1]-[4] investigated the benefit of fast storage for frequency regulation by performing the economic analysis and dynamic simulation of ancillary service markets and system operations. The studies indicate that fast storage is economically viable for frequency regulation. In addition, the grid benefits from the high ramping capabilities and the short response times of the regulation providers. In order to speed up the pace of storage adoption for the purposes of frequency regulation, the Department of Energy has funded several demonstration projects under the American Recovery and Reinvestment Act (ARRA). For example, Beacon Power with $24 million in funding from ARRA and $48 million of the total
project value, has designed and built the 20 MW and 5 MWh flywheel frequency regulation plant. The project is intended to put this technology on equal footing with conventional regulation providers by demonstrating the physical and economical feasibility of the flywheel technology [5]. The plant was commissioned in 2011 in the area of the NewYork ISO and so far demonstrates good economic and technical performance. To consolidate this achievement, in the beginning of 2013 Beacon Power started to build the flywheel regulation plant with the same parameters on the PJM footprint. The flywheel technology is acknowledged for its characteristics that make it attractive for the provision of frequency regulation service. Specifically, this technology can withstand harsh cyclic requirements of regulation. We can also identify following beneficial aspects of flywheels: fast response capability (the regulation storage resource based on flywheel technology is able to respond to any AGC signal command within its capacity limits), long life time, high round-trip efficiency of 95-98%, low maintenance costs and ease of siting.

The recent push for demonstration projects has been accompanied by a number of policy regulations, which goal is to further promote the use of storage technologies in frequency regulation provision. All wholesale electricity markets in the United States are overseen by the Federal Energy Regulatory Commission (FERC), an agency that ensures competitiveness and fairness for all parties, operating in the markets. The integration of new technologies into frequency regulation provision has been the subject of two FERC orders recently. The major stimulus for greater use of the storage came with the FERC Order No.755 released on October 20, 2011 [6]. Under this order, frequency regulation service providers must be compensated using a two-part tariff. The first part is a payment for capacity to operate under AGC signal, i.e., a unit must reserve a part of the output for regulation provision. The second part of frequency
regulation compensation is the performance payment that reflects the quantity of the up and down movements in response to the system operator's AGC dispatch signal. This part accounts for the fact that a fast-response resource with a higher ramping rate is more effective in providing regulation service than a slow-response resource with a low ramping capability and must be paid appropriately. Hence, FERC ensures that Order No. 755 results in more regulation being provided by technologies that are faster-responding to the AGC signal and more suitable to provide regulation service, while fewer conventional resources will participate in the market. Since resources that provide greater benefits to the grid are compensated appropriately, the implementation of Order No. 755 will lead to better market efficiency through alignment of performance and incentives.

The subsequent regulatory action indirectly affecting the integration of storage into frequency regulation is FERC Order No. 764 released on June 22, 2012 [7]. The order mandates to partition the day-ahead market (DAM) scheduling period into shorter-duration subperiods to facilitate the integration of VERs and energy-limited resources into energy and ancillary services markets. For the storage-based regulation suppliers this order is beneficial since it provides more flexibility in allocation of the stored energy in a most effective way.

The demonstration projects and policy initiatives had demonstrated that FES is a viable technology, which can provide regulation service into the grid. Such encouraging results raise a question of what is an effective deployment of FES technology for this purpose. This is a precise issue we address in the thesis. But, as a first step we discuss the salient aspects of the AGC service provision and review the current state of the art in the area of the frequency regulation service provision by storage devices, in general, and by FES, in particular. We then follow with a
description of the contribution made by the work reported here. Section 1.5 outlines the contents of this thesis.

1.2 The Salient Aspects of AGC Service Provision by Storage Technology

AGC service is implemented to control the output of several generators to maintain frequency within acceptable bounds and regulate the power interchange between control areas. *AGC* service is one of the ancillary services that are traded in electricity markets running by independent system operators (*ISOs*) and regional transmission organizations (*RTOs*). The *ISOs* and *RTOs*, referred in the thesis as independent grid operators (*IGOs*), purchase the frequency regulation service in the *DAMs* and real-time markets (*RTMs*) from suppliers which are able to respond to the *AGC* signal by varying their output according to the signal commands. By selling certain capacity bandwidth on regulation market, the unit operator implies the responsibility to vary the unit’s output under *AGC* commands within this bandwidth. The scheduled capacity output that resulted from the outcome of energy *DAMs* clearing establishes the baseline rate of the unit providing *AGC* service. If the resource following the *AGC* commands raises its output above the baseline rate, it provides regulation up service. In contrast, if the unit lowers its output below baseline rate, it provides regulation down. The *IGO* s have different approaches in procurement of the regulation service. For example, *CAISO* procures up and down regulation as two separate products. On the other hand, *PJM* considers up and down regulation as a single product. In order to facilitate our discussion, we consider regulation in up and down directions as two separate products, which are traded separately. Under current policies, all *IGO* s prohibit the energy-limited resources from selling energy. Therefore, storage devices operate with zero
baseline rate, which implies that their generation mode is for the regulation up service provision and their load mode is for regulation down service.

1.3 Review of the State of the Art in Storage Utilization for Frequency Regulation

The question of how to utilize the storage for the frequency regulation service provision has been the subject of several papers. In this section we give a brief summary of the literature related to the utilization of storage resources in the frequency regulation service provision. A very useful and comprehensive survey paper assessing the storage utilization in the AGC service provision is by Ibraheem et al. [8].

The emergence of new storage technologies over the last two decades pushed the researchers to explore the technologies’ compatibility for frequency regulation service provision. A number of papers and reports have outlined conceptually what storage technologies fit the requirements of AGC service [9]-[13]. For example, Gross and Guille have presented the conceptual framework of vehicle-to-grid (V2G) implementation and demonstrated its feasibility for regulation service provision [11]. The utilization of superconducting magnetic energy storage (SMES) for AGC is introduced in [10]. The recent advancements of battery technology enabled the conceptual development of large-scale storage facilities for AGC service provision, which has been analyzed in [9], [12], [13].

The large majority of the papers related to the AGC service provision by storage technologies discuss the modifications in control algorithms that allow accommodation of the limited capability of storage technologies [14]-[18]. The decentralized AGC concept deals with
storage facilities spread over distantly connected geographical territories [14]. The multilevel control concept is used to build a hierarchical structure in the usage of conventional and storage AGC providers [15].

There is a long history of work on using the fast-acting storage in conjunction with VER generation [19]-[24]. Thatte et al. proposed the scheme to coordinate wind generation and FES for a provision of grid frequency regulation service [19]. The scheme enables both wind generation and FES to collectively respond to the system frequency deviation. It is shown that this combination can effectively provide AGC service, however, under certain conditions the valuable wind generation can be spilled out due to the limited storage capability of the FES. The effect is also observed for aggregation with photovoltaic energy resources [20].

After restructuring, the storage facilities are operated as private entities by offering regulation capacities in IGO-run ancillary service markets. A number of works has focused on strategies to maximize profits from participating in the market [25]-[27]. Researchers from the Pacific Northwest National Laboratory have developed a method to generate the DAM offer schedule for a hybrid storage system, which includes fast-response FES and slow response hydro unit [25]. The strategy aims to maximize profit from energy and frequency regulation provision in the wholesale market. The Donadee and Ilic approach to generate the offers into the DAMs for frequency regulation and energy bids for charging the aggregated fleet of electric vehicles involves the stochastic co-optimization of these services [26]. Their scheme allows the provision of both up and down regulation services during the low-load conditions as they assume a non-zero baseline rate of charging. Hence, if aggregation charges with capacity lower than the baseline rate, then it provides regulation down service; in contrast, if aggregation charges with capacity above the baseline rate, it provides the regulation up service. Both [25] and [26] are
focused on offering services in hourly DAMs, but do not recognize the ample potential from participating in RTMs.

The deployment and successful operation of the FES in the NYISO markets provides researchers valuable data on FES performance in the frequency regulation provision. References [28]-[30] report the current practice of FES utilization, particularly by analyzing the key challenges and disadvantages associated with the FES technology. Engineers are careful to note that FES has a relatively low energy-to-power ratio, a situation that implies a clear restriction on its ability to provide frequency regulation over longer periods of time and one type of regulation needs. Figure 1.1 represents the regulation AGC signal requirements for a typical summer day of June 14, 2011 in PJM and the corresponding FES status during this day. The 20 MW and 5 MWh FES participates on hourly DAMs by offering its full capacity in up and down directions and is able to provide regulation only for 62% of the total 24 hours. The remaining time the FES was unable to respond to the AGC commands because it had hit the upper or the lower physical limit of the energy level. Vu, Masiello, et al. report an unavailability rate as high as 41% [28]. The effect is especially unfavorable because the unit cannot contribute regulation during high load conditions. The IGO has no choice but to procure regulation services from other resources to meet regulation requirements. In order to effectively accommodate the energy-limited regulation resources, IGOs are looking for other solutions.

There are several attempts to deal with the described limitation on FES performance. For example, CAISO is implementing the regulation energy management (REM) system for non-generating resources [31] participating in the regulation market. The REM is based on a smart grid system, which controls not only the capacity output of the unit, but also monitors the energy level of the storage device. Using the regulation requirements and energy level of each resource
that provides regulation service, *IGO* determines the appropriate *AGC* signal for each player and ensures nonviolation of energy limits. This approach allows for the improvement of the regulating units’ performance, but some critics express concerns of grid reliability once the number of energy-limited regulation suppliers attains critical mass [32].

Until now there has been no work which investigates the advantageous characteristics of the real-time *AGC* service market and their possible utilization to improve the performance of regulation suppliers. Since the regulation service is a commodity now, deeper understanding of how to effectively exploit the market environment is needed.

Figure 1.1: *PJM* regulation requirements and *FES* status on June 14, 2011
The regulation service is crucial for grid reliability, so that the issue of FES effective utilization is certainly of interest in the frequency regulation realm. We address in this thesis the solution approach of effective utilization of the FES in market environment. In Section 1.4 we summarize our proposed approach of effective utilization of the FES in the regulation service provision.

1.4 Scope and Contribution of the Thesis

In this thesis, we provide a comprehensive approach for the formulation of offers into the DAMs and RTMs with the express objective to effectively utilize FES for the provision of regulation service. In our studies we consider a single FES operated by an entity to offer regulation services into the IGO-run ancillary service markets. We have analyzed and employed the procedures established for storage resources participating in the ancillary service market to provide frequency regulation. We explicitly take into account the requirements of the recent FERC Orders No. 755 and No. 764.

Our work makes several contributions to the state-of-the-art. The developed approach of FES utilization for the frequency regulation provision allows the FES to provide reliable service into the grid. At the heart of our approach is the formulation of strategies with the objective to produce the offers into the hourly DAMs and the RTMs around the clock. The strategies are formulated as optimization programs with explicit representation of FES limited storage capability, response time and capacity limitations. Since the physical considerations are fully taken into account and the up-to-date information of FES time-varying variables is available for
the RTMs, the robust solution provides a reliable regulation service provision and can handle the inherent uncertainties in the AGC signals.

We demonstrate the capability of the developed approach through a number of case studies using AGC signal and year 2011 price data from the CAISO and PJM. The test results indicate that the strategies formulated by the FES for the DAMs and RTMs are effective in ensuring full compliance with AGC signals sent by the IGO. Moreover, the effective utilization of the FES results in commensurate increase of FES monthly payment for frequency regulation service provision. In our sensitivity studies we investigate the impact of changing the duration of the cyclic offer pattern in DAMs and the impact of deployment of the risk-taking offer strategy on RTM. Another application of the proposed approach is to the analysis of the impacts of the policy changes promulgated by FERC. Specifically, we investigate the impact of the FERC Order No. 764 implementation, which mandates to partition hourly DAM periods into shorter subperiods.

The proposed approach for the formulation of offers into the DAMs and RTMs enables the FES operator to effectively utilize the regulation unit by providing reliable service in the grid. Furthermore, the implemented case studies can help the FES operator to quantify the range of benefits and limitations of IGO’s ancillary service market rules and frequency regulation service provision procedures.

1.5 Outline of the Thesis

The thesis consists of four additional chapters and three appendices. In Chapter 2 we provide a detailed description of the frequency regulation provision framework, which is
represented as a three-layer structure of the regulation service provision in the day-ahead and real-time markets, and the layer of physical operations under AGC.

In Chapter 3, we use the proposed framework to construct the FES strategies to offer in hourly DAMs and RTMs around the clock. First we provide a general mathematical statement of the FES offer strategy in hourly DAMs making use of the DAM market rules and timeline. We, next, exploit the regulation provision cyclic behavior to formulate the DAM strategy as a linear optimization program. After setting up the necessary assumptions, we construct the FES offer strategy into RTMs. We detail all the constraints, imposed as a result of the accepted offers into hourly DAMs and the preceding same hour RTMs, and by the limited physical capability of the FES.

In Chapter 4, we describe the results from representative case studies we have carried out using the proposed approach and actual 2011 data from the CAISO and PJM. In our studies, we investigate the impact of changing the duration of the cyclic offer pattern in DAMs and the impact of deployment of the risk-taking offer strategy on RTM. In this chapter, we also analyze the impacts of the policy changes promulgated by the FERC. Specifically, we investigate the impact of FERC Order No. 764 implementation, which mandates partitioning hourly DAM periods into shorter subperiods.

In Chapter 5, we summarize the results of our studies and point out directions for future work. Appendix A provides a summary of notations used in the thesis. In Appendix B, we give the procedure to calculate the FES payment for the regulation service provision, taking into account the requirements of FERC Order No. 755. In Appendix C, we provide a description of the AGC model, incorporated into the three-layer structure, and present an overview of the simulation approach.
In this chapter we describe the development of the analytic framework, which we construct for the formulation of the strategies for FES participation in the two sets of markets – DAMs and RTMs. We start from the FES modeling to appropriately represent the physical characteristics of the unit, the impacts of the market rules and the unit response to the AGC signal under actual operating conditions. We continue with an overview of the framework structure which includes three layers and provide a detailed description of each layer.

2.1 The Three-Layer Framework of the Regulation Service Provision

The key objective of this chapter is to develop a framework capable to deal with all aspects of the regulation service provision by FES such as obligations imposed by participation in DAMs and RTMs and obligations to respond to AGC signals under real-time physical operations. In order to meet these objectives, a detailed representation of markets and AGC control is required. However, there is no single standard market design across the United States
and implementation of AGC control also varies. Therefore, in order to accommodate these differences, the framework must be stated on the most general basis.

The developed framework structure, as illustrated in Figure 2.1, has three layers – a layer for the offer formulation into the hourly DAMs (DAM layer), another layer for the additional offer formulation into RTMs (RTM layer) and a simulation layer of the FES operations in response to the AGC signals sent by the IGO to whose system the FES is interconnected (AGC physical operations layer). We interconnect these three layers by introducing the information flows to represent the interactions between the markets and actual operations under AGC. In order to appropriately represent these information flows in Section 2.2 we provide a detailed description of the FES model for the frequency regulation service provision.

![Figure 2.1: Three-layer structure of the framework](image)

2.2 The FES Modeling for the Frequency Regulation Service Provision

We consider the parameters of the FES for the frequency regulation service provision. We denote by r^M the maximal ramping rate of the unit. The ramping rate is a parameter provided
by the manufacturer to indicate the capacity increase/decrease per minute capability of the regulation unit. The ramping rate of FES is very high and can attain ±300 MW/min.

We next consider the storage capability of the storage regulation unit. We denote by E^M the maximum storage capability of the FES in MWh. Based on the manufacturer’s FES performance analysis, discharge of the FES to zero stored energy is not recommended, since this can exacerbate the unit’s degradation. Therefore, we denote by E^m the minimal level of stored energy the unit can be discharged to during the regulation service provision. The $p^{M,+}$ designates a maximum capacity of regulation up service and $p^{M,-}$ is a maximum capacity for regulation down service. Due to lack of operational experience with limited energy storage resources, the existing IGO market rules put certain restrictions on the ability of FES to offer energy into the DAM and RTM. As a result, the output base point of the FES for every time period is zero. The zero base point implies that the FES operates in generation mode for regulation up service provision and in load mode for regulation down service provision.

A convenient starting point for the FES modeling description is the AGC physical operations layer in which we embed the representation of FES operations in response to the AGC signals sent by the IGO. Figure 2.2 depicts the functional diagram of the AGC system. Frequency f is measured and compared with the reference frequency f_{ref} to generate a signal proportional to the frequency deviation Δf. A weighted value of this signal is added to the net tie-line interchange error ΔP_{tie} to produce the area control error (ACE) that corresponds to the power by which total generation must be changed in order to maintain frequency and the tie-line power interchange at the scheduled values [33]-[38]. The ACE value and DAMs and RTMs results from corresponding layers are input data to the energy management system (EMS) which defines the contribution of FES to the total frequency control service provision based on RTMs and DAMs clearing results and FES physical characteristics. The control algorithm of EMS broadcasts every σ_n interval the specific AGC instruction with a command to raise or lower its power output.

Analyzing the regulation service provision by FES, we consider the σ_n interval as a smallest indecomposable unit of time, and no phenomena of shorter duration is considered in our study.
We use $r_{h,\tau_k}[\sigma_n]$ to denote the AGC signal instruction. By the adopted convention, $r_{h,\tau_k}[\sigma_n]$ is positive when the regulation unit is instructed to increase generation and negative when it is instructed to lower generation. We also use $c_{h,\tau_k}[\sigma_n]$ to denote the actual power output of the FES at interval σ_n of subperiod τ_k in hour h. By the same convention, the $c_{h,\tau_k}[\sigma_n] > 0$, when the unit injects energy into the grid (generator mode) and $c_{h,\tau_k}[\sigma_n] < 0$, when the unit withdraws energy (load mode). Therefore, the output $c_{h,\tau_k}[\sigma_n]$ in interval σ_n is related to $c_{h,\tau_k}[\sigma_{n+1}]$ in interval σ_{n+1} by:
\[c_{h,\tau_k}[\sigma_{n+1}] = c_{h,\tau_k}[\sigma_n] + \Delta c \quad (2.1) \]

\[
\Delta c = \begin{cases}
- r_{h,\tau_k}[\sigma_n] & \text{if } r_{h,\tau_k}[\sigma_n] < 0 \\
 r_{h,\tau_k}[\sigma_n] & \text{if } r_{h,\tau_k}[\sigma_n] \geq 0
\end{cases}
\]

Figure 2.3 depicts the functional diagram of the FES response to AGC signal instructions. We use \(\varepsilon_{h,\tau_k}[\sigma_n] \) to denote the energy charge level at the end of interval \(\sigma_n \) of subperiod \(\tau_k \) in hour \(h \). The output \(\varepsilon_{h,\tau_k}[\sigma_n] \) at interval \(\sigma_n \) is correlated with \(\varepsilon_{h,\tau_k}[\sigma_{n+1}] \) at \(\sigma_{n+1} \) as follows:

\[\varepsilon_{h,\tau_k}[\sigma_{n+1}] = \varepsilon_{h,\tau_k}[\sigma_n] + \frac{c_{h,\tau_k}[\sigma_n]}{NK} \quad (2.2) \]

Equations (2.1) and (2.2) establish the equations of motion of the FES unit under AGC control.

Figure 2.3: The FES response to AGC signal instructions
As discussed in Section 1.2, we consider regulation in the up and down directions as two separate products. Figure 2.4 represents an example of the FES providing regulation service for two hours by illustrating the capacity range over which the unit has to vary its output under the given AGC signal. The unit participates in regulation service provision and schedules to provide regulation up κ_h^+ and down κ_h^- in hour h and regulation up κ_{h+1}^+ and down κ_{h+1}^- in hour $h+1$. In other words, by providing regulation up service the seller assumes an obligation to vary its capacity output under the AGC signal between the zero base point and κ_h^+, and for regulation down between 0 and $-\kappa_h^-$. A similar statement is applicable to hour $h+1$. It is evident, that the FES is constrained by maximum capacity limits in generation $p_{M,+}$ and load $p_{M,-}$ modes.

Figure 2.4: Regulation up and down service provision

After the electric power industry restructuring, frequency regulation became one of the ancillary services that must be procured on a competitive basis. Hence, the fleet of units participating in regulation is selected up on the clearing of the DAMs and RTMs using market mechanisms. In Sections 2.3 and 2.4 we analyze the frequency regulation provision in a market
environment by considering the DAM and RTM layers of the framework and focusing on offer formulation and dependence between two markets.

2.3 Layer for Offer Formulation into the Hourly DAMs

The regulation DAM is a capacity market operated by the IGO. Every AGC service seller indicates willingness to sell the service by submitting an offer to the IGO. Offers specify the sale quantities and prices. Unlike an energy market, where the demand is determined by equilibrium of demand and supply curves, the total regulation requirements for every hourly DAM are determined by IGO as a percentage of the total load forecast [39]-[40]. Figure 2.5 depicts the timeline of the regulation DAM. All sellers, willing to participate on DAMs of day d, must submit their offers for each hour h in day d by 10 a.m. of day $d - 1$. Under existing market rules, the IGO determines the outcome of the DAM by co-optimizing energy and ancillary services markets so that energy, regulation and spinning reserve requirements are met in the most economic manner. At 12 p.m. of day $d - 1$, the IGO informs all regulation sellers cleared to provide service about the uniform clearing prices and the awarded capacity. The participants cleared on the DAM have an obligation for provision of regulation between 12 a.m. and 11:59:59 p.m. of day d.

![Figure 2.5: Regulation DAM timeline](image)

Figure 2.5: Regulation DAM timeline
By 10 a.m. on day $d-1$ the regulation service seller submits the offer decision $\hat{\beta}^d_h$ for every hour h in \mathcal{H}. In order to comply with FERC Order No. 755, which requires the IGO to account for the performance of the regulation provision, the offer $\hat{\beta}^d_h$ must include the following components and can be represented as

$$\hat{\beta}^d_h = \left\{ \hat{k}^+_h, \hat{\rho}^+_h, \hat{k}^-_h, \hat{\rho}^-_h, \hat{\mu}_h \right\} \quad (2.3)$$

We denote by $\hat{\rho}^+_h$ ($\hat{\rho}^-_h$) the offer capacity price for regulation up (down) on DAM at hour h, and by $\hat{\mu}_h$ the offer mileage price on DAM at hour h. As a result of market clearing, every frequency regulation service provider receives back information regarding the capacities it is cleared to provide and capacity ρ^+_h, ρ^-_h and mileage μ_h clearing prices, which are uniform for all cleared participants. IGO can clear not all the capacity offered for regulation but only part of it, so that following inequalities hold:

$$\kappa^+_h \leq \hat{k}^+_h$$
$$\kappa^-_h \leq \hat{k}^-_h$$

Based on the market outcome information the seller is obligated to follow AGC instructions within an established capacity range, bounded by κ^+_h and κ^-_h, and receive payment based on uniform clearing prices 28 days after the regulation service provision. The settlement scheme and equations to quantify the seller’s payment are given in Appendix B.

2.4 Layer for Additional Offer Formulation into RTMs

Regulation RTM is a rolling market, run by IGO every subperiod τ_k. The objective of regulation RTM is the procurement of additional regulation requirements arising in nearer-to-real-time operations. In this section we discuss the mechanics of regulation RTM we exploit in developing the formulation of the RTM offer strategy.
On a regulation RTM we define a subperiod \(\tau_k \) to be a smallest indecomposable unit of time. We use a subscript \((h, \tau_k)\) after a variable to represent the subperiodic RTM quantities.

According to each IGO’s rules, regulation service sellers indicate their willingness to participate on RTM by submitting the offer \(\hat{y}_{h,\tau_k} \), whose components are similar to the components of the offer into a DAM in (2.3), but apply to only interval \(\tau_k \):

\[
\hat{y}_{h,\tau_k} = \left\{ \left\{ V_{h,\tau_k}^+, \hat{x}_{h,\tau_k}^+ \right\}, \left\{ V_{h,\tau_k}^-, \hat{x}_{h,\tau_k}^- \right\}, \phi_{h,\tau_k} \right\}
\]

The offer \(\hat{y}_{h,\tau_k} \) must be submitted during the subperiod \(\tau_{k-2} \), as depicted on the RTM timeline shown in Figure 2.6. After RTM clearing, IGO publishes the information regarding clearing prices \(x_{h,\tau_k}^+, x_{h,\tau_k}^- \), \(\phi_{h,\tau_k} \) and FES regulation capacity rewards \(v_{h,\tau_k}^+, v_{h,\tau_k}^- \).

![Figure 2.6: Regulation RTM timeline](image)

The combined effect of cleared DAM and RTM results necessitates the addition of regulation capacities from both markets. We denote by \(\delta_{h,\tau_k}^+ \) (\(\delta_{h,\tau_k}^- \)) the combined regulation up (down) capacity on subperiod \(\tau_k \) in hour \(h \). Since the combined regulation capacity for each
individual regulation unit results from participating in both the DAM and the RTM, we define the
combined regulation up capacity as

$$\delta_{h,r_k}^+ = \kappa_h^+ + \nu_{h,r_k}^+$$

and the combined regulation down capacity as

$$\delta_{h,r_k}^- = \kappa_h^- + \nu_{h,r_k}^-$$

To explain the concept, we provide a graphical diagram on Figure 2.7 to indicate the impact of
the regulation up and down provision on both DAMs and RTMs. Regulation up \(\kappa_h^+\) and down
\(\kappa_h^-\) capacities cleared on DAMs form the hour-long capacity range around a zero base point to
operate under AGC signal. Additionally, every RTM subperiod the regulation resource is
obligated to widen the capacity range for regulation up by \(\nu_{h,r_k}^+\) and down by \(\nu_{h,r_k}^-\) resulting from
the accepted RTM offer.

According to the IGO’s market rules, the maximal combined offer is constrained by
maximal capacity output of the unit in the generation and the load modes:

$$\hat{\kappa}_h^+ \leq p^{M,+} ; \hat{\kappa}_h^- \leq p^{M,-}$$

$$\delta_{h,r_k}^+ \leq p^{M,+} ; \delta_{h,r_k}^- \leq p^{M,-}$$

On the other hand, the minimal capacity offer for the regulation market is constrained by the
minimal capacity offer in up \(p^{m,+}\) and down \(p^{m,-}\) directions, specified in IGO’s market rules:

$$\hat{\kappa}_h^+ \geq p^{m,+} ; \hat{\kappa}_h^- \geq p^{m,-}$$

$$\nu_{h,r_k}^+ \geq p^{m,+} ; \nu_{h,r_k}^- \geq p^{m,-}$$

For example, most IGOs do not accept regulation offers in either direction below 0.5 MW.
Summary

In this chapter we have developed the comprehensive framework for the offer strategies formulation in the two sets of markets – DAMs and RTMs. The framework incorporates the regulatory, financial and physical considerations of frequency regulation service provision by a FES unit, as well as their interactions, together with the analytical basis for the formulation of offers in compliance with the specified market rules. The developed framework structure has three layers – a layer for the offer formulation into the hourly DAMs, another layer for the additional offer formulation into the RTMs and a simulation layer of FES operations in response to the AGC signals sent by the system operator into whose system the FES is integrated. We have also discussed the FES modeling to appropriately represent the physical characteristics of the
unit, the impacts of the market rules and the unit response to the AGC signal under actual operating conditions.
CHAPTER 3

THE FES OFFER STRATEGY FORMULATION

In this chapter we apply the developed framework to construct the FES offer strategies formulation into the DAMs and RTMs. These two markets operate on different timescales, involve different levels of granularity, and differ in the time at which the market decisions are taken. Under these conditions, we may decouple the offer problem into two subproblems of offer regulation service on DAMs and RTMs independently. As a FES unit is a profit maximizing entity, the goal of the FES unit operator is to maximize the quantity of service provision so as to assure a steady stream of return on its investment. In order to meet objectives of FES participation in the frequency regulation market, the offer strategy formulations are stated as constraint optimization problems with a representation of the inter-temporal evolution of the storage in the FES.

The chapter contains three sections. In Section 3.1 we develop the offer strategy on hourly DAMs in most general terms and state it as a bilinear optimization problem. Next, in Section 3.2 we make use of periodicity of the frequency regulation provision cycle, so as the offer strategy is stated as a linear program. Section 3.3 presents the offer strategy on RTM.
3.1 Offer Regulation Service Strategy Formulation into the DAMs

In this section we provide a mathematical statement of the FES offer strategy formulation into the hourly DAMs making use of the DAM structure with the timeline as specified in Chapter 2.

By 10 a.m. of day \(d - 1 \) the FES operator must make offer decision \(\hat{\beta}_h \) for every hour \(h \) in \(\mathcal{H} \). The determination of set \(\{ \hat{\beta}_h, \forall h \in \mathcal{H} \} \) consists of following steps:

1. determination of the hours when the FES has willingness to provide regulation service
2. determination of the type of regulation (up, down or both) to provide if the FES is willing to offer the service in that hour
3. determination of the capacity in MW for each regulation service in hour \(h \)
4. determination of capacity and mileage price offers for each regulation service in hour \(h \)

On a DAM, we consider an hour to be a smallest indecomposable unit of time. As such, if FES chooses to provide regulation in hour \(h \), then it has to operate under the AGC signal during the entire hour \(h \). We denote by \(u_h \) the binary variable, which indicates the willingness to provide any regulation in hour \(h \):

\[
u_h = \begin{cases}
1 & \text{if FES provides regulation service in hour } h \\
0 & \text{otherwise}
\end{cases}
\]

Next, we denote by \(u_h^+ \) (\(u_h^- \)) the binary variable, indicating the willingness to provide regulation up (down) in hour \(h \):

\[
u_h^+ = \begin{cases}
1 & \text{if FES provides regulation up service in hour } h \\
0 & \text{otherwise}
\end{cases}
\]

\[
u_h^- = \begin{cases}
1 & \text{if FES provides regulation down service in hour } h \\
0 & \text{otherwise}
\end{cases}
\]
We can establish the following relationships between these binary variables:
\[u_h = 1 \iff u_h^+ + u_h^- \geq 1 \]

It indicates that if FES offers frequency regulation service at least in one direction then it is under AGC for the entire hour \(h \). On the other hand, if FES does not offer any regulation, then it is not under AGC and can use this hour to offer the service into the RTMs and move its storage energy charge to a pre-specified value.

According to the IGO’s market rules, if a regulation provider offers AGC service into the DAM then the capacity must be greater than the minimum capacity offer in the up \(p^{m,+} \) and down \(p^{m,-} \) directions, which quantities are stipulated by IGO, and less than the FES physical upper capacity limit in charging \(p^{M,-} \) and discharging \(p^{M,+} \) modes. Hence, for those hours when FES offers any type of regulation on DAM (\(u_h = 1 \)), we state the following capacity offer constraints and relate them to corresponding binary variables:

\[p^{m,+} \leq \hat{k}_h^+ \leq p^{M,+} \iff u_h^+ = 1 \]
\[p^{m,-} \leq \hat{k}_h^- \leq p^{M,-} \iff u_h^- = 1 \]

For an hour in which FES does not offer up (down) regulation service, the corresponding binary variable \(u_h^+ (u_h^-) \) is set equal to zero. The Figure 3.1 depicts the offer decision diagram.

Next, we discuss the energy constraints, imposed by the FES limited energy capability. Since the AGC signal indicates the demand-supply imbalance in real time, the actual shape of the AGC curve is not known ahead of its determination. Therefore, the FES operator does not have information of the exact value of stored energy at the end of an hour \(h \) when the unit offers regulation service. The energy constraints are specified in terms of the upper and lower bounds of the storage unit capability. We denote for the end of the hour \(h \) the upper and lower bounds of stored energy by \(\bar{e}_h \) and \(e_h \), respectively. Moreover, if the unit does not offer the regulation service in hour \(h \) DAM, it uses this hour \(h \) to recharge the FES to pre-specified charge rate \(e_h^0 \).
To establish inter-hour relationships of FES energy charge, we need to consider all possible realizations of the AGC signal over the period of the offer. This task involves an enormous amount of work. In order to simplify the problem, we may only consider those AGC signal realizations which move the FES charge toward boundary conditions. Since the main feature of the proposed offer strategy is a FES guaranteed capability to provide regulation service under every possible realization of AGC signal, the boundary conditions of AGC can establish the FES energy charge bounds, hence, significantly simplifying the problem. Figure 3.2 depicts a possible AGC realization and the associated energy charge in the FES that results. The upper (lower) energy bound at the end of hour h is calculated based on assumption that unit was charging (discharging) with a capacity κ_h^- (κ_h^+) during the entire hour h.

Figure 3.1: Offer decision-making diagram
At the end of the hour \(h \), during which the FES offers regulation capacity, the upper bound on its stored energy is determined under the assumption that the AGC signal commands the FES to provide regulation down service with capacity \(\hat{\kappa}_h^- \) throughout the hour:

\[
\bar{e}_h = \bar{e}_{h-1} + \hat{\kappa}_h^-
\]

(3.3)

The lower bound of stored energy is determined under the analogous assumption that the AGC signal commands the FES to provide regulation up service with capacity \(\hat{\kappa}_h^+ \) throughout the hour:

\[
\underline{e}_h = \underline{e}_{h-1} - \hat{\kappa}_h^+
\]

(3.4)

Figure 3.2: A possible AGC signal with its impact on the associated FES energy charge and the “worst-case” boundary limits
The equations (3.3) and (3.4) are applicable for the hour h, during which the FES provides regulation. For the case that the FES does not provide regulation service in hour h, the FES moves its stored energy to a pre-specified value e^0_h. To capture both these possibilities, we use binary variable u_h in the energy constraint formulation, which introduces cross-hourly coupling in the hourly DAMs:

$$
\overline{e}_h = (\overline{e}_{h-1} + \hat{\kappa}^-_h)u_h + e^0_h (1-u_h)
$$

$$
\underline{e}_h = (\underline{e}_{h-1} + \hat{\kappa}^+_h)u_h + e^0_h (1-u_h)
$$

The hourly energy bounds are also constrained by the FES’s upper and lower physical energy storage limits:

$$
\overline{e}_h \leq E^M
$$

$$
\underline{e}_h \geq E^m
$$

The objective of the offer problem is to maximize the FES revenues for the regulation service provision. As such, we formulate the objective function as follows:

$$
f(\hat{\kappa}^+_h, \hat{\kappa}^-_h) = \sum_{h=1}^{H} (w^+_h \hat{\kappa}^+_h + w^-_h \hat{\kappa}^-_h)
$$

where w^+_h and w^-_h are the weighting coefficients that reflect the hourly capacity prices of the day d, based on price forecasts or past historical data.

In summary, we denote the inter-hourly energy constrained DAM regulation service offer problem by $\mathcal{M}(\mathcal{H})$ and state it as follows:

$$
\max_{\hat{\kappa}^+_h, \hat{\kappa}^-_h, u_h, u^-_h, u^+_h} \sum_{h=1}^{H} (w^+_h \hat{\kappa}^+_h + w^-_h \hat{\kappa}^-_h)
$$

subject to
The optimal solution to \(M(\mathcal{H}) \) is specified by the set \(\{u_h, \forall h \in \mathcal{H}\} \), which indicates the hours in which to regulation service is provided \((u_h = 1)\) and the hours in which the FES does not participate in the regulation service provision \((u_h = 0)\) so as to allow it to have the stored energy at the pre-specified value at the end of the hour \(h \), the sets \(\{u_h^+, \forall h \in \mathcal{H}\} \) and \(\{u_h^-, \forall h \in \mathcal{H}\} \), which indicate the types of regulation service provided in each hour \(h \) in \(\mathcal{H} \) in which the FES offers regulation service and the values of \(\hat{k}_h^+ \) and \(\hat{k}_h^- \), which determine the offer amount in hour \(h \). Note that all these quantities are the components of the set \(\{\hat{\beta}_h, \forall h \in \mathcal{H}\} \). With regard to offer prices, we assume that each FES is a price taker and so submits offers with zero prices \(\hat{\beta}_h^+ = \hat{\beta}_h^- = 0 \) and \(\hat{\mu}_h = 0 \) for \(\forall h \) in \(\mathcal{H} \). In addition, there are the associated sets \(\{\bar{e}_h, \forall h \in \mathcal{H}\} \) and \(\{\underline{e}_h, \forall h \in \mathcal{H}\} \) of upper and lower energy bounds for every hour \(h \) in \(\mathcal{H} \). We use these sets to impose the energy constraints in the RTM offer problem formulation.

The problem statement above is in its general form and cannot be solved analytically as it involves the solution of a bilinear mixed-integer optimization problem and is intractable for \(H = 24 \). In Section 3.2 we make use of the salient characteristics of energy limited frequency regulation units and features of frequency regulation DAM to formulate a linear optimization problem and state the conditions to determine its optimal solution.
3.2 DAMs Regulation Offer Strategy Formulated as a Linear Program

In order to simplify the DAM offer problem \(M(\mathcal{H}) \), we wish to exploit the fact that the alternation of \(\xi \) hours when the unit provides regulation service in both the up and the down directions \((u_h = 1, \ h = 1, 2, ..., \xi) \) and hour \(\xi + 1 \) when the unit does not participate in regulation provision \((u_{\xi+1} = 0) \) constitutes a cycle. We provide in Figure 3.3 the graphical illustration of regulation service provision patterns for \(\xi = 1, 2, ..., 5 \) and the assumption that \(H = 24 \) is an hour in which the FES does not participate in the regulation service provision. The hours in which the FES provides regulation service are crosshatched. Each \(\xi + 1 \) hour cycle schedule has FES participation in the DAMs for the first \(\xi \) hours and no participation in hour \(\xi + 1 \). Moreover, for the transition to the next-day DAMs, the FES does not participate in the hour 24 DAM. This latter constraint may shorten the last cycle duration. For example, for \(\xi = 5 \) the FES participates at the hours 1-5, 7-11, 13-17, 19-23. The FES does not participate in the hours 6, 12, 18 and 24.

Figure 3.3 Regulation service provision patterns for \(\xi = 1, 2, ..., 5 \) with \(H = 24 \) designated as an hour for no participation in the regulation service
Based on initial charge e^0_ξ at the beginning of the cycle and characteristics of FES, we can quantify the cycle of ξ hours which guarantees at least minimum capacity offers $p_{m,+}$ and $p_{m,-}$ for every hour h. In other words, we need to choose a value for ξ which ensures that the FES is capable of providing both types of regulation for the entire ξ hours.

We use the following procedure to check the feasibility of ξ for a given e^0_ξ:

1. Specify the upper and lower bounds of stored energy at the end of ξ hours. If there are no other restrictions, we choose them to be an upper E^M and lower E^m energy limits of the regulation unit.

2. If $\bar{\xi} > \frac{E^M - e^0_\xi}{p_{m,-}}$ or $\underline{\xi} > \frac{e^0_\xi - E^m}{p_{m,+}}$, then ξ is not feasible and any $\xi^* > \xi$ is also not feasible.

3. If $\bar{\xi} \leq \frac{E^M - e^0_\xi}{p_{m,-}}$ and $\underline{\xi} \leq \frac{e^0_\xi - E^m}{p_{m,+}}$, then ξ is feasible.

Once ξ is determined, we next define the set \mathcal{H}^ξ of the hours in which the FES participates in the offer of regulation service in the DAM:

$$\mathcal{H}^\xi = \{1, 2, \ldots, \xi, \xi + 2, \ldots, 2\xi - 1, 2\xi, 2\xi + 2, \ldots, H - 1\}$$

Now we can proceed to the statement of the optimization problem with the objective to maximize the capacity revenues over the set \mathcal{H}^ξ. We denote the inter-hourly energy constrained offer problem by $\mathcal{D}(\mathcal{H}^\xi)$ and state it as follows:

$$\max_{\xi^*, \xi^+, \xi^-} \sum_{h=1}^{\xi} \left(w_h^+ \hat{K}_h^+ + w_h^- \hat{K}_h^- \right)$$

subject to
The optimal solution to $\mathcal{D}(\mathcal{H}^\xi)$ is specified by the set of the values of κ_h^+ and κ_h^-, which determine the offer amount into the DAM for $\forall h \in \mathcal{H}^\xi$, and the sets $\{\overline{e}_h, \forall h \in \mathcal{H}^\xi\}$ and $\{e_h, \forall h \in \mathcal{H}^\xi\}$ of upper and lower energy bounds for every h in \mathcal{H}^ξ. The problem $\mathcal{D}(\mathcal{H}^\xi)$ is formulated as a linear program and, hence, can be easily solved by well-known methods.

3.3 Offer Regulation Service Strategy Formulation into the RTMs

In this section we develop the formulation of the FES offer strategy for regulation service in the RTMs associated with the hour h DAM. We employ the outcomes of the hour h DAM as the basis to determine the real-time offers into an associated RTM. Specifically, the DAM results establish constraints on the FES offers into an associated RTM. Given that the DAM capacity awards κ_h^+ and κ_h^-, we identify two distinct cases depending on the κ_h^+ and κ_h^- values. The first case covers those hours $h \in \mathcal{H}^\xi$ in which the FES offer for regulation service is accepted in whole or in part. The second case is for the set $\mathcal{H}' = \{h, \ h \in \mathcal{H}, \ h \notin \mathcal{H}^\xi\}$ in which the FES does not offer regulation service into the DAM and moves its charge to a specified value.
We consider first the formulation of the RTM offer strategy for hours \(h \in \mathcal{H} \) and so the unit has the obligation to provide regulation service into the DAM. In light of the analysis of the IGO rules discussed in Section 2.4, we adopt the following offer protocols. The FES operator makes the offer decision \(\hat{f}_{k,\tau_k} \) for the subperiod \(\tau_k \) of hour \(h \), which must be submitted at the end of subperiod \(\tau_{k-2} \), as shown in Figure 2.6. Similar to the offer strategy into the DAMs, we assume the regulation seller is a pricetaker in the RTMs and so submits the capacity and mileage prices to be

Figure 3.4: Energy constraints that must be satisfied in the formulation of the RTM offer

\[35 \]
In order to be able to submit the offer by the deadline, the FES operator starts to formulate its offer at the end of subperiod \(\tau_{k-3} \), as indicated in Figure 2.6. At that time, the FES seller has the following information:

- energy charge \(s_{h,\tau_{k-3}} \) at the end of subperiod \(\tau_{k-3} \) in hour \(h \)
- the capacity awards after clearing the hour \(h \) DAM, specifically \(\kappa_h^+ \) and \(\kappa_h^- \), which are constant over the entire hour \(h \)
- \(RTM \) awards \(\nu_{h,\tau_{k-2}}^+ \) and \(\nu_{h,\tau_{k-2}}^- \) for subperiod \(\tau_{k-2} \)
- FES operator’s capacity offers \(\hat{\nu}_{h,\tau_{k-1}}^+ \) and \(\hat{\nu}_{h,\tau_{k-1}}^- \) for subperiod \(\tau_{k-1} \)
- the lower bound \(e_h \) and the upper bound \(\bar{e}_h \) of the stored energy at the end of hour \(h \)

This information serves to formulate the following constraints (Figure 3.4):

- the allowed capacity range \([-\delta_{h,\tau_{k-2}}^-; \delta_{h,\tau_{k-2}}^+] \) to participate in response to the AGC signals sent in the subperiod \(\tau_{k-2} \) limits the combined DAM and RTM awards of either service

\[
\delta_{h,\tau_{k-2}}^+ = \kappa_h^+ + \nu_{h,\tau_{k-2}}^+
\]

\[
\delta_{h,\tau_{k-2}}^- = \kappa_h^- + \nu_{h,\tau_{k-2}}^-
\]

- at the end of subperiod \(\tau_{k-3} \) the RTM for subperiod \(\tau_{k-1} \) is unknown but the allowed capacity range \([-\delta_{h,\tau_{k-1}}^-; \delta_{h,\tau_{k-1}}^+] \) to participate in response to the AGC signals during the subperiod \(\tau_{k-1} \) limits the combined DAM award and the RTM offer amount in period \(\tau_{k-1} \):

\[
\delta_{h,\tau_{k-1}}^- = \kappa_h^- + \hat{\nu}_{h,\tau_{k-1}}^-
\]

\[
\begin{align*}
\hat{\chi}_{h,\tau_k}^+ = \hat{\chi}_{h,\tau_k}^- = 0, \\
\hat{\phi}_{h,\tau_k} = 0
\end{align*}
\]
\[\delta_{h,\tau_k}^+ = \kappa_h^+ + \nu_{h,\tau_k}^+ \]

- the lower and upper bounds of the stored energy in the subperiod \(\tau_{k-2} \) in terms of the charge \(s_{h,\tau_{k-3}} \) and the combined capacity awards for up service \(\delta_{h,\tau_{k-2}}^+ \) and down service \(\delta_{h,\tau_{k-2}}^- \) regulation in subperiod \(\tau_{k-2} \):

\[
\begin{align*}
\underline{\alpha}_{h,\tau_{k-2}} & \leq s_{h,\tau_{k-2}} \leq \overline{\alpha}_{h,\tau_{k-2}} \\
\underline{\alpha}_{h,\tau_{k-2}} & \leq \alpha_{h,\tau_{k-3}} - \frac{\delta_{h,\tau_{k-2}}^+}{K} \\
\overline{\alpha}_{h,\tau_{k-2}} & \geq s_{h,\tau_{k-3}} + \frac{\delta_{h,\tau_{k-2}}^-}{K}
\end{align*}
\]

- the lower and upper bounds of the stored energy in the subperiod \(\tau_{k-1} \) in terms of the period \(\tau_{k-2} \) bounds \(\underline{\alpha}_{h,\tau_{k-2}} \leq s_{h,\tau_{k-2}} \leq \overline{\alpha}_{h,\tau_{k-2}} \), the combined DAM award and period \(\tau_{k-1} \) accepted RTM offer:

\[
\begin{align*}
\underline{\alpha}_{h,\tau_{k-1}} & \leq s_{h,\tau_{k-1}} \leq \overline{\alpha}_{h,\tau_{k-1}} \\
\underline{\alpha}_{h,\tau_{k-1}} & \leq \alpha_{h,\tau_{k-2}} - \frac{\delta_{h,\tau_{k-1}}^+}{K} \\
\overline{\alpha}_{h,\tau_{k-1}} & \geq \alpha_{h,\tau_{k-2}} + \frac{\delta_{h,\tau_{k-1}}^-}{K}
\end{align*}
\]

- the lower and upper bounds of the stored energy in the subperiod in terms of the allocated energy range restricted by \(e_h \) and \(\overline{e}_h \) in hour \(h \) and the obligations entailed by the hour \(h \) DAM clearing results taking into account that there are \(K - k \) remaining subperiods in hour \(h \):

\[
\begin{align*}
\underline{\alpha}_{h,\tau_k} & \leq s_{h,\tau_k} \leq \overline{\alpha}_{h,\tau_k} \\
\underline{\alpha}_{h,\tau_k} & \geq \underline{e}_h + \frac{(K - k)}{K} \kappa_h^+ \\
\overline{\alpha}_{h,\tau_k} & \leq \overline{e}_h - \frac{(K - k)}{K} \kappa_h^-
\end{align*}
\]
• the constraints imposed by the upper and the lower stored energy bounds in the subperiods \(\tau_k \) and \(\tau_{k-1} \) on the real-time offers \(\hat{v}^-_{h, \tau_k} \) and \(\hat{v}^+_{h, \tau_k} \):

\[
\overline{\alpha}_{h, \tau_k} - \overline{\alpha}_{h, \tau_{k-1}} \geq \frac{\kappa_h^- + \hat{v}^-_{h, \tau_k}}{K}
\]

\[
\underline{\alpha}_{h, \tau_{k-1}} - \underline{\alpha}_{h, \tau_k} \geq \frac{\kappa_h^+ + \hat{v}^+_{h, \tau_k}}{K}
\]

• the impacts of the constraints of the FES maximum capacity output in the charging and discharging modes \(p^{M,+} \) and \(p^{M,-} \), respectively, and those of the minimum capacity offer \(p^{m,+} \) and \(p^{m,-} \):

\[
\kappa_h^- + \hat{v}^-_{h, \tau_k} \leq p^{M,-}
\]

\[
\kappa_h^+ + \hat{v}^+_{h, \tau_k} \leq p^{M,+}
\]

\[
p^{m,+} \leq \hat{v}^+_{h, \tau_k}
\]

\[
p^{m,-} \leq \hat{v}^-_{h, \tau_k}
\]

We denote the formulation of the DAM outcome constrained RTM offer problem for subperiod \(\tau_k \) in hour \(h \in H \) as \(R_{h \in H \cap \tau_k} \) and state it as follows:

\[
\begin{align*}
\max_{\hat{v}^+_{h, \tau_k}, \hat{v}^-_{h, \tau_k}, \alpha_{h, \tau_{k-1}}, \alpha_{h, \tau_k}} & \quad \hat{v}^+_{h, \tau_k} + \hat{v}^-_{h, \tau_k} \\
\text{subject to} & \\
\end{align*}
\]
\[
\begin{align*}
\alpha_{h,\tau_{k-2}} & \leq s_{h,\tau_{k-3}} - \frac{\kappa^+ + \nu^+_{h,\tau_{k-2}}}{K} \\
\bar{\alpha}_{h,\tau_{k-2}} & \geq s_{h,\tau_{k-3}} + \frac{\kappa^- + \nu^-_{h,\tau_{k-2}}}{K} \\
\alpha_{h,\tau_{k-1}} & \leq \alpha_{h,\tau_{k-2}} - \frac{\kappa^+ + \nu^+_{h,\tau_{k-1}}}{K} \\
\bar{\alpha}_{h,\tau_{k-1}} & \geq \bar{\alpha}_{h,\tau_{k-2}} + \frac{\kappa^- + \nu^-_{h,\tau_{k-1}}}{K} \\
\alpha_{h,\tau_k} & \geq e_h + \frac{(K-k)}{K} \kappa^h \\
\bar{\alpha}_{h,\tau_k} & \leq \bar{e}_h - \frac{(K-k)}{K} \kappa^h
\end{align*}
\]

The optimal solution to \(R_{h \in \mathcal{H}^i}(\tau_k)\) is specified by the set of the values of \(\hat{\nu}^+_{h,\tau_k}\) and \(\hat{\nu}^-_{h,\tau_k}\), which determine the offer amount into the RTM for subperiod \(\tau_k\) of hour \(h \in \mathcal{H}^i\).

We next consider the RTM offer strategy for the hours \(h \in \mathcal{H}'\), in which the unit does not participate in the offer of regulation service into the DAMs. Rather, in such hours, the FES moves its charge to be at a pre-specified value of \(e^0_h\). The RTM regulation timeline is the same as depicted in Figure 2.6. A significant advantage of flywheel technology is the relatively high ramping rate and so the FES can charge or discharge to attain a pre-specified value \(e^0_h\) within no more than a few real-time subperiods. We denote by \(\omega\) the number of real-time subperiods, used by the FES to charge or discharge. For the remaining \(K - \omega\) subperiods of hour \(\xi + 1\) in the cycle, the FES may participate in regulation service provision and so offers its capacity into those RTMs without being constrained by the hour \(\xi + 1\) DAM clearing outcomes. Moreover, the
FES regulation RTM offer for subperiod τ_k is constrained only by the obligations to provide service in the preceding subperiods τ_{k-1} and τ_{k-2}. These facts allow us to formulate the following constraints:

- the lower and upper bounds of the stored energy in the subperiod τ_{k-2} in terms of the charge $s_{h,\tau_{k-2}}$ and the real-time capacity awards for up service $\nu^+_{h,\tau_{k-2}}$ and down service $\nu^-_{h,\tau_{k-2}}$ regulation in subperiod τ_{k-2}:

$$\underline{\alpha}_{h,\tau_{k-2}} \leq s_{h,\tau_{k-2}} - \frac{\nu^+_{h,\tau_{k-2}}}{K}$$
$$\overline{\alpha}_{h,\tau_{k-2}} \geq s_{h,\tau_{k-2}} + \frac{\nu^-_{h,\tau_{k-2}}}{K}$$

- the lower and upper bounds of the stored energy in the subperiod τ_{k-1} in terms of the period τ_{k-2} bounds $\underline{\alpha}_{h,\tau_{k-2}} \leq s_{h,\tau_{k-2}} \leq \overline{\alpha}_{h,\tau_{k-2}}$ and submitted RTM offer in subperiod τ_{k-1}:

$$\underline{\alpha}_{h,\tau_{k-1}} \leq \underline{\alpha}_{h,\tau_{k-2}} - \frac{\hat{\nu}^+_{h,\tau_{k-1}}}{K}$$
$$\overline{\alpha}_{h,\tau_{k-1}} \geq \overline{\alpha}_{h,\tau_{k-2}} + \frac{\hat{\nu}^-_{h,\tau_{k-1}}}{K}$$

- the lower and upper bounds of the stored energy in the subperiod in terms of the physical energy limits of the FES taking into account that there is no DAM clearing in hour $\xi + 1$:

$$\underline{\alpha}_{h,\tau_{k}} \leq s_{h,\tau_{k}} \leq \overline{\alpha}_{h,\tau_{k}}$$
$$\underline{\alpha}_{h,\tau_{k}} \geq E^m$$
$$\overline{\alpha}_{h,\tau_{k}} \leq E^M$$

- the constraints imposed by the upper and the lower stored energy bounds in the subperiods τ_k and τ_{k-1} on the real-time offers $\hat{\nu}^+_{h,\tau_k}$ and $\hat{\nu}^-_{h,\tau_k}$:
\[
\alpha_{h, \tau_k} - \bar{\alpha}_{h, \tau_{k-1}} \geq \frac{\hat{\nu}^-_{h, \tau_k}}{K} \\
\alpha_{h, \tau_{k-1}} - \bar{\alpha}_{h, \tau_k} \geq \frac{\hat{\nu}^+_{h, \tau_k}}{K}
\]

We denote the formulation of the RTM offer problem for subperiod \(\tau_k \) in hour \(h \in \mathcal{H}' \) as \(\mathcal{R}_{h \in \mathcal{H}'(\tau_k)} \) and state it as follows:

\[
\max_{\hat{\nu}^+, \hat{\nu}^-} \quad \hat{\nu}^+_{h, \tau_k} + \hat{\nu}^-_{h, \tau_k}
\]

subject to

\[
\alpha_{h, \tau_{k-2}} \leq s_{h, \tau_{k-3}} - \frac{\nu^+_{h, \tau_{k-2}}}{K} \\
\bar{\alpha}_{h, \tau_{k-2}} \geq s_{h, \tau_{k-3}} + \frac{\nu^-_{h, \tau_{k-2}}}{K} \\
\alpha_{h, \tau_{k-1}} \leq \alpha_{h, \tau_{k-2}} + \frac{\hat{\nu}^+_{h, \tau_{k-1}}}{K} \\
\bar{\alpha}_{h, \tau_{k-1}} \geq \bar{\alpha}_{h, \tau_{k-2}} + \frac{\hat{\nu}^-_{h, \tau_{k-1}}}{K} \\
\bar{\alpha}_{h, \tau_{k}} - \bar{\alpha}_{h, \tau_{k-1}} \geq \frac{\hat{\nu}^-_{h, \tau_k}}{K} \\
\alpha_{h, \tau_{k-1}} - \alpha_{h, \tau_k} \geq \frac{\hat{\nu}^+_{h, \tau_{k-1}}}{K} \\
\alpha_{h, \tau_k} \geq E^m \\
\bar{\alpha}_{h, \tau_k} \leq E^M
\]

The optimal solution to \(\mathcal{R}_{h \in \mathcal{H}'(\tau_k)} \) is specified by the set of the values of \(\hat{\nu}^+_{h, \tau_k} \) and \(\hat{\nu}^-_{h, \tau_k} \), which determine the offer amount into the RTM for subperiod \(\tau_k \) in hours \(h \in \mathcal{H}' \).
3.4 Summary

In this chapter we have introduced the formulation of the offer strategies for the regulation service provision into the DAMs and the RTMs. The statement of the formulation may be expressed as a linear program with the explicit representation of the inter-temporal evolution of the storage in the FES. The solution approach for this optimization problem makes extensive use of robust optimization concepts to determine the offer amounts of up and down regulation to service in each market for its corresponding period. These solutions provide conservative results under which both up and down regulation can be provided with 100% guarantee, independent of what the AGC signal turns out to be and taking into account the most up-to-date information on unit status up to the time an offer must be submitted. In Chapter 4, we apply this approach to obtain via simulation the results of representative studies in order to quantify the economics of the FES participation in the regulation service provision.
We devote this chapter to demonstrate the capability of the *DAM* and *RTM* offer strategy formulation approach and quantify the improved performance over current techniques through various case studies using actual 2011 AGC signal and price data from two large systems – the *CAISO* and *PJM*. Our studies include the investigations of the impacts of changing the duration of the cyclic offer pattern into the *DAMs*. We also study the impacts of the deployment of risk-taking offer strategies into the *RTMs*. A very insightful application of the proposed approach is the analysis of policy issue impacts. We illustrate such an application through a study of the changes promulgated by *FERC* in its Order No. 764 to mandate the partition of each hourly *DAM* period into shorter subperiods.

We begin the chapter by describing the scope and nature of the simulations carried out for the set of representative studies discussed in this chapter. We then proceed to present our results and findings obtained from the case studies. We conclude the chapter with a summary of the key results.
4.1 Scope and Nature of the Simulation

In this section, we present a brief description of the test system and provide an overview of the various applications of the proposed methodology presented in Chapter 3 to construct DAM and RTM offer strategies for frequency service provision. The representative case studies presented serve to illustrate the capabilities of the methodology.

The results we present in the chapter are drawn from the case studies performed using PJM and CAISO control signal data and price information with the provision of regulation service by a 20 MW FES with 5 MWh storage capability. Since the regulation service is procured by the IGO on a zonal basis, we do not consider the topology of the grid and assume that all the energy produced by the FES can be absorbed by the grid and the grid has the capability to supply the energy charged by the FES in the provision of down regulation. This assumption is reasonable given a large system and a limited capacity/capability FES. All our studies are performed under the assumption of perfect knowledge of AGC signal and are totally deterministic in nature.

The deepening penetration of VERs integrated into the grid has driven federal policy, which aims to encourage the further implementation of VERs in the most effective way [41]-[42]. Recently FERC issued Order No. 764 with the mandate to require IGOs to implement intra-hour scheduling changes, i.e., to partition hourly DAM periods into smaller subperiods. The shorter DAM subperiods introduce certain benefits from the utilization of additional meteorological data for wind and solar generation forecasting due to the higher time resolution. For energy-limited storage resources providing frequency regulation service, the introduction of sub-hourly DAM subperiods allows the more cost-effective allocation of the unit’s limited energy capability. The simulation approach is constructed by making use of the simulation layer of the framework and has the capability to perform the FES economic studies by varying the duration of the DAM period. These studies allow the identification of the optimal duration of the DAM period for the effective utilization of the FES unit in frequency service provision.

The FES operator’s offer decision into the DAMs impacts the RTM offers for the entire day d. The alternative to the offer of more capacity into the DAMs is the additional offer of regulation capacity into the RTMs and the reverse. In order to determine the optimal combination of day-ahead and real-time offers, we need to perform an economic assessment of various DAM
offer strategies with different durations of the cycle offer pattern ξ. Such studies can help to identify the most effective regulation offer strategy into the DAMs.

The offer strategies into the hourly DAMs and associated RTMs formulated in Chapter 3 are made under the “worst-case scenario” assumption for the provision of a single type of regulation service over the entire duration of the period covered by a submitted offer. These strategies provide conservative results under which both up and down regulation can be provided with 100% assurance independent of what the AGC signal turns out to be. This very conservative approach does not take into account the inherent uncertain characteristics of the AGC signals. The nature of frequency regulation service has been the subject of several studies. The study done by Oak Ridge National Laboratory investigates the mean value of AGC requirements over different time durations [1]. It reports that, in most cases, the long-term mean value of the AGC curve is in the zero value neighborhood. In light of this finding, we may use a more risky approach in the formulation of the RTM capacity offers. In other words, we first scale up the regulation capacity offers, calculated as a result of the proposed approach to determine the real-time offer capacity values:

$$\tilde{V}_{h, r_{k}} = q V_{h, r_{k}}$$

$$\tilde{V}_{h, r_{k}} = q V_{h, r_{k}}$$

where q is an augmentation factor > 1. We next examine the economic impacts of such augmented RTM capacity offers.

4.2 Case Studies Results and Sensitivity Analysis

In this section, we discuss the case study results with the two test data sets from CAISO and PJM. In order to analyze the differences across the seasons, we disaggregate the FES revenues for frequency regulation service provision on a seasonal basis with the months of June, July and August as the summer period, the months of September, October and November as the fall period, the months of December, January and February as the winter period and the months of March, April and May as the spring period. As a reference case for each system we take the existing offer strategy when the FES participates only in hourly DAMs in which it offers its full capacity to provide up and down regulation services.
Figure 4.1 depicts the average total monthly revenues for capacity in the frequency regulation service provided in each season with different DAM offer patterns. Specifically, we change the duration of the cycle offer parameter ξ from 1 to 5. Every monthly payment is represented as a sum of the DAM and the RTM revenues. We note, that if the FES provides service using conventional offer strategy (the reference case), then all payments are calculated based on day-ahead regulation prices. In contrast, if the unit offers service only into RTMs ("RTM only" case), then the revenues are calculated based on RTM prices. For all other cases considered in the study, the total revenues are the sum of the RTM and the DAM revenues.

From Figure 4.1, we see that for all four seasons the average monthly capacity payment decreases monotonically as the offer cycle ξ increases. The highest increase in monthly capacity revenue is for the offer strategy with $\xi = 1$ in all four seasons. Compared to the base case this strategy provides up to a 4.6% of increase in the monthly revenues. Any increase of ξ obtains no improvements in either the CAISO test system or in the PJM test system. The “RTM only” offer strategy provides revenue growth for the winter months of 2.2%, but in the summer, fall, and spring months, we observe revenue reductions of 2.7%, 0.8%, and 2.4%, respectively.

In Figure 4.2, we plot the monthly mileage payments for different DAM strategies in the four seasons. We observe increases in the monthly mileage payments under the offer strategy with $\xi = 1$ in the summer and the winter seasons of 4.2 and 6.3%, respectively, with respect to the reference case. On the other hand, for the “RTM only” strategy, there is a mileage payment increase for all seasons. The deployment of this strategy provides revenue growth of 4.4, 2.8, 5 and 6.1% for the summer, fall, winter, and spring seasons, respectively, compared with the reference case values. In general, the capacity revenues and mileage payments behave in a similar manner due to the fact that capacity revenues compensate capacity bandwidth of the regulation unit dedicated to provide regulation, i.e., to follow AGC signal instructions. As more capacity is provided by the FES, the larger the shifts are that the unit needs to perform. Hence, the mileage payment increases is a consequence.

Next, we explore the seasonality effect on the FES total monthly revenues. The highest payment for regulation service provision occurs in the summer season. The reason for this is that the summer load is considerably higher than that in the other three seasons. Increases in load cause more volatility in the load-generation balance, consequently the FES is instructed to
provide more regulation resulting in additional revenues. This finding holds for both the CAISO and the PJM test systems.

Figure 4.1: The average total monthly revenues for capacity of the delivered frequency regulation service for the CAISO test system
Figure 4.2: The average monthly mileage payments from regulation service in the DAMs and the RTMs in the CAISO test system
In Figure 4.3 we depict the FES total monthly revenues for those offer strategies in which we observe an increase in revenues. The total monthly revenues consist of capacity revenues, mileage payments and payments or charges for supplied or consumed energy. In these studies, we do not include the energy payments or charges because their fraction in total payment never exceeds 0.2%. From Figure 4.3 we see that an offer strategy with \(\xi = 1 \) results in increases in FES monthly revenues on 3.3, 3.2, 4.9 and 2.7% for the summer, fall, winter, and spring seasons, respectively, with reference to the conventional approach. Moreover, for the winter season, we observe the increase in the FES revenues of 2.1 and 2.8% for the DAM strategy with \(\xi = 2 \) and “RTM only” offer strategies, respectively, with reference to the conventional case.

![Figure 4.3: The monthly total revenues for regulation service in the CAISO test system](image)

In Section 4.1, we discussed the FERC Order No. 764 obligation on the IGOs to partition the hourly DAM periods into shorter intervals. This order impacts FES regulation service
providers with benefits since with the shorter duration subperiods, the provider manages its stored energy more effectively. However, there is the lingering question as to the most beneficial duration of the DAM period for the FES frequency regulation service provision. In order to answer this question we performed an extensive sensitivity study on the DAM period duration. To illustrate the impact of a DAM period reduction, we depict in Figures 4.4–4.6 the total monthly regulation service provider revenues with DAM period durations of 15, 20, and 30 minutes under different service provision cycles ξ. The conventional offer strategy serves as the reference for the analysis of simulation results. For a 15-minutes DAM period, the peak monthly revenues are obtained with the cycle $\xi = 3$. Smaller ξ values result in lower revenues because of less effective FES stored energy utilization. On the other hand, for $\xi > 3$ the limited FES storage capability limits the unit ability to offer more capacity on regulation into the DAMs. Therefore, the monthly revenues decrease. For 20- and 30-minute DAM periods, the monthly revenues are higher for $\xi = 1$, as illustrated in Figures 4.5 and 4.6. These results are commensurate with those obtained for case studies with hourly periods, but since we have the finer granularity for regulation provided in the DAMs, the monthly revenues increase above the reference case levels obtained with one-hour DAM periods.

Figure 4.4: Total monthly FES revenues under 15-minute DAM periods
Figure 4.5: Total monthly FES revenues under 20-minute DAM periods

From this discussion we conclude that the FES can benefit from the reduced duration DAM period. The DAM period duration of 15 minutes combined with appropriate DAM offer strategy
\(\zeta = 3 \) provides the largest increase in monthly revenues. For the 20- and 30-minute DAM periods, the revenue increases are smaller, but are still above those in the reference case.

We next investigate the impacts on FES monthly revenues of the deployment of risk-taking offer strategies into the RTMs. In our studies we parametrized the augmentation factor \(q \) to calculate FES total revenues for a given value of \(\zeta \). Figure 4.7 depicts the plot of the FES total monthly revenues for \(\zeta = 1 \) and \(\zeta = 2 \). The plots for \(\zeta = 3, 4 \) and 5 are not of interest, since the total monthly revenues are below those in the reference case. From Figure 4.7 we see that for \(\zeta = 1 \) with \(100\% \leq q \leq 160\% \), as \(q \) increases the monthly total revenues increase. This means that the benefits from the additional capacity of the offer exceed the revenue losses from the inability to respond to AGC signals due to hitting a storage capability limit. If we increase \(q \) above 160\% we obtain no revenue increases because of the reduction in the number of \(\sigma \) intervals when the FES is responsive to AGC signals. Such a reduction causes the decrease in capacity revenues and mileage payments, and, therefore, in the total revenues.

We see that the choice of \(q \) involves a trade-off: \(q \) needs to be large enough to have an impact on capacity revenues and mileage payments, but also needs to be sufficiently small to avoid hitting a storage capability limit during regulation service provision. We obtain a similar plot for \(\zeta = 2 \) with peak monthly revenues with \(q = 170\% \).

In order to obtain a better representation of the relationship between \(q \) and monthly revenues, we display the \(q \) sensitivity for \(150\% \leq q \leq 170\% \) under \(\zeta = 1 \) in Figure 4.8. We see that the peak monthly revenues of $353,403 corresponding to the RTM capacity offer augmentation by 63\%. In this case, we have an increase in monthly revenues of $30,867, which is a meaningful amount for a FES service provider.
Figure 4.7: Total FES revenues for RTM capacity offer augmentation over the
$110\% \leq q \leq 200\%$ with $\xi = 1$ and 2

Figure 4.8: Total FES revenues for RTM capacity offer augmentation over the
$150\% \leq q \leq 170\%$ with $\xi = 1$
4.3 Summary

In this chapter we demonstrated the ability of the proposed formulation for the offer strategies into DAMs and their associated RTMs through representative case studies using the actual 2011 year AGC signals and the price data from two large systems – the CAISO and the PJM. Studies show that the offer strategies formulated for the FES participation in the DAMs and the RTMs result in the provision of guaranteed service fully responsive with the AGC signals sent by the IGO. We also presented the studies to investigate the impacts of changing the duration of the cycle offer pattern parameter \(\xi \) for the DAMs so as to bring about the most effective utilization of the FES unit. With a 20 MW FES with 5 MWh storage capability in the 2011 CAISO data case, such utilization results from participation in every other hourly DAM – i.e., a cycle of one hour participation followed by one hour of non-participation – to have 12 consecutive such cycles each day. The simulation study results for this specific case indicate that this cycle increases the FES annual revenues by 3.3% over those with the current FES offer strategy at full capacity for every hourly DAM. We also studied the impacts of the deployment of risk-taking offer strategies into the RTMs. We find that such offer strategies into the RTMs result in increases in FES monthly revenues. Specifically, the increase of the RTM capacity in the up and down regulation service offers by 63% increases the monthly revenue by nearly 10% over the risk-free conservative strategy. A very insightful application of the proposed approach is to the analysis of policy issue impacts. Our studies indicate that the mandate of the FERC Order No. 764 to introduce shorter DAM subperiods result in improved utilization of storage and in increases in revenues for the frequency regulation service provision.
CHAPTER 5
CONCLUSIONS

In Section 5.1, we provide a brief synopsis of the work presented in this thesis. In Section 5.2, we detail directions for future work for the utilization of FES resources in frequency regulation service provision.

5.1 Summary

In this thesis we have developed a comprehensive approach to effectively utilize FES resources to provide guaranteed AGC service to the grid. The approach makes detailed use of the analytic framework we have developed for both analysis and simulation purposes. The framework incorporates the regulatory, financial and physical considerations in frequency regulation service provision by a FES unit and constructs the analytical basis for the formulation of offers into the two sets of markets – the DAMs and the RTMs. The framework has a three-layer structure – a layer for offer formulation into the hourly DAMs, another layer for additional offer formulation into the RTMs and a simulation layer of FES operations in response to the AGC signals sent by the system operator into whose system the FES is integrated. The analytic basis in the framework allows the determination of the appropriate constraints for use in the formulation of the offers for each set of markets. This basis incorporates the modeling of the FES unit...
developed to appropriately represent its salient physical characteristics with different levels of granularity in the three layers. In addition, the representations of the market rules are embedded in each layer. The models in the DAM and the RTM layers are able to provide the respective boundary limits under worst-case scenario of one type regulation service over the entire duration of the period covered by a submitted offer. As a result, the offer is formulated with the full assurance that the frequency regulation service can be provided over the entire period associated with the offer so as to satisfy all the physical and the regulatory constraints.

The application of the framework to the formulation of offer strategies makes use of robust optimization concepts in the solution of the optimization problem to determine the amount of the up and down regulation to offer in each market for each period/subperiod. These solutions provide conservative results under which both up and down regulation can be provided with 100% guarantee independent of what the AGC signal turns out to be and taking into account the most up-to-date information on the unit status at the time the offer is submitted. To obtain these results, we take full advantage of the distinct considerations in the hourly DAM and in its associated RTMs. The offers for each market are made at different times and we use participation in the RTM to adaptively correct the accepted offer into its associated DAM by detailed use of the updated information on the FES stored energy level. We also investigated the modification of the conservative solutions to construct more risky RTM offers and evaluate their performance over a range of values of the capacities for regulation up and down service provision.

We have demonstrated the capability of the developed approach and quantified the improved performance over existing techniques through various case studies using the historical AGC signal and price data from two large systems – the CAISO and the PJM. The representative studies presented in this thesis show that the offer strategies formulated for the FES participation
into the DAMs and the RTMs provide guaranteed service fully responsive to the IGO sent AGC signals. The specific studies that investigated the impacts of changing the duration of the cyclic offer pattern in the DAMs to bring about the best utilization of the FES unit provide important insights into the cycle choice. For the 2011 CAISO data case, the best utilization results from participation in every other hour’s DAM – i.e., a cycle of one hour participation followed by one hour of non-participation – to have 12 consecutive such cycles per day. Indeed, the results indicate that this cycle increases the FES annual revenues by 3.3% over those with the current FES offer strategy. We also studied the impacts of the deployment of risky offer strategies into the RTMs. We find that such offer strategies in the RTMs results in increased FES monthly revenues.

A very insightful application of the proposed approach is to the analysis of policy issues. We illustrate such an application through an analysis of the changes promulgated by FERC in its Order No. 764 to mandate the partitioning of each hourly DAM period into four 15-minute subperiods. Our studies indicate that the shorter subperiods result in improved utilization of the storage capability and in increases in revenues for the frequency regulation service over those for the hourly periods. These representative results clearly indicate that the proposed approach generates offer strategies that result in the better utilization of the FES to provide guaranteed frequency regulation service.

5.2 Directions for Future Work

The thesis reported constitutes a good starting point for the future study of additional issues related to frequency regulation provision by storage technologies. The ongoing advancements in
flywheel technology motivate the parametric study of the sensitivity of the regulation service provision with respect to improvements obtainable from capacity and storage capability increases of FES units. Such studies can also shed light on the willingness to pay for such improvements by the FES owners.

In light of recent experiences in the deployment of storage devices for frequency regulation service provision an interesting extension of the work is the consideration of optimal deployment of aggregations of multiple FES units with both uniform and non-uniform characteristics. In considering the aggregation of multiple FES units, the important question that is raised, is whether it makes sense to cluster the FES units into various subgroups so as to allow their more effective utilization for frequency regulation service provision. Such a question can be answered as part of a broader problem concerning the effective utilization of a fleet of different storage technologies, say, hydro, FES and large-scale batteries. The formulation of an answer to this question requires the extension of the framework to include the representation of all the technologies of interest.

Another issue that requires future work is the deployment of the extended framework to formulate the appropriate incentives to stimulate the energy storage suppliers to provide guaranteed frequency regulation service. Such an investigation needs to formulate appropriate payments to the storage resources so as to veer them away from the submission of risky offers to provide guaranteed service.
APPENDIX A

NOTATION USED IN THE THESIS

For the DAM layer we adapt the convention that the hour \(h \) starts at \((h-1:00:00)^{+}\) and ends at \(h:00:00 \) and so the hour excludes the point \((h-1:00:00)\) and includes \(h:00:00 \). Hence, the hour \(h \) is represented by semi-open time interval, as shown in Figure A.1.

![Figure A.1: Hourly intervals for the DAM](image)

Each DAM has an hour as the smallest indecomposable unit of time and no phenomena of shorter duration may be represented in a DAM. We represent the system by its snapshot whose values are assumed to hold for the entire hour. We define the set of \(H \) hours \(\mathcal{H} = \{1, 2, \ldots, H\} \) to denote the collection of the hours for which the DAMs are cleared and the outcomes are determined.

Under the selection of an hour as a smallest indecomposable unit of time, we are unable to represent any phenomenon of any duration under an hour. Therefore, we have adopted the following protocol: all values on DAM are established at the end of the hour and they are assumed to hold over the entire hour (Figure A.1). For example, DAM capacity award \(\kappa_h^- (\kappa_h^+) \)
for regulation down (up) is constant for the entire hour h, energy charge ε_h is measured at the single point in time $h:00:00$ and assumed to hold over the entire hour h.

The similar protocol is applicable for the RTM layer, when we consider a subperiod τ_k as the smallest indecomposable unit of time. The variables associated with each RTM are assumed to be constant for the entire subperiod τ_k and subscript (h, τ_k) of a variable represents the RTM variables. We define the subset of K equal duration subperiods $\mathcal{T}_h = \{\tau_1, \tau_2, \ldots, \tau_K\}$ in hour h, one for each RTM with duration $\frac{60}{K}$ minutes in that hour. We adopt the protocol that the subperiod τ_k of hour h starts at $((h - 1): \frac{60(k - 1)}{K} : 00)^+$ and so the subperiod τ_k excludes the point $((h - 1): \frac{60(k - 1)}{K} : 00)$ and includes $((h - 1): \frac{60k}{K} : 00)$. Hence, each subperiod $\tau_k, k = 1, 2, \ldots, K$, is represented by the semi-open time interval that covers the range from $((h - 1): \frac{60(k - 1)}{K} : 00)^+$ to $((h - 1): \frac{60k}{K} : 00)$, as we indicate for the semi-open intervals in Figure A.2.

![Figure A.2](image-url)

Figure A.2: The subperiods τ_k for each RTM are semi-open intervals

All values on RTM are established at the end of the subperiod τ_k and they are assumed to hold over the entire subperiod τ_k. Thus, energy charge s_{h, τ_k} is measured at the single point in
time \((h-1: \frac{60k}{K}: 00)\) and assumed to hold over the entire subperiod \(\tau_k\) of hour \(h\), RTM capacity award \(v_{h,\tau_k}^+ (v_{h,\tau_k}^-)\) for regulation up (down) is constant for the entire subperiod \(\tau_k\) of hour \(h\).

We next examine the AGC physical operations layer to effectively represent the AGC intervals. The values during real-time operation under AGC are assumed to be constant for the entire interval \(\sigma_n\). We use the variable \(\sigma_n\) in square brackets to denote the variables relating to physical operation under AGC. We define a subset of \(N\) equal duration intervals

\[I_{h,\tau_k} = \{\sigma_1, \sigma_2, \ldots, \sigma_N\} \]

in subperiod \(\tau_k\) of hour \(h\), one for each AGC signal with duration \(\frac{3600}{KN}\) seconds.

We adopt the protocol that the interval \(\sigma_n\) of subperiod \(\tau_k\) of hour \(h\) starts at

\((h-1: \frac{60(k-1)}{K}: \frac{3600(n-1)}{KN})^+\) and ends at \((h-1: \frac{60(k-1)}{K}: \frac{3600n}{KN})\) and so the interval \(\sigma_n\) excludes the point \((h-1: \frac{60(k-1)}{K}: \frac{3600(n-1)}{KN})\) and includes \((h-1: \frac{60(k-1)}{K}: \frac{3600n}{KN})\).

Hence, each interval \(\sigma_n, \ n = 1, 2, \ldots, N\), is represented by the semi-open time interval that covers the range from \((h-1: \frac{60(k-1)}{K}: \frac{3600(n-1)}{KN})^+\) to \((h-1: \frac{60(k-1)}{K}: \frac{3600n}{KN})\).

Similarly to RTM and DAM layers, all values relating to physical operations under AGC are established at the end of the interval \(\sigma_n\) and they are assumed to hold over the entire interval \(\sigma_n\). For example, capacity output \(c_{h,\tau_k}[\sigma_n]\) is assumed to be constant for the entire interval \(\sigma_n\),

energy charge \(e_{h,\tau_k}[\sigma_n]\) is measured at the single point in time \((h-1: \frac{60(k-1)}{K}: \frac{3600n}{KN})\) and assumed to hold over the entire interval \(\sigma_n\). Figure A.3 depicts the semi-open intervals \(\sigma_n\) of physical operations under AGC.
Figure A.3: The intervals σ_n of physical operations under AGC

Figure A.4 represents the time segments of DAM, RTM and physical operations under AGC layers.

Figure A.4: Time frame for the AGC service in the market environment

Key aspects include the following:

- The elements of each offer have the $\hat{}$ notation
- All regulation up-related variables/parameters have the superscript “+”
- All regulation down-related variables/parameters have the superscript “-”
- We define $\dagger = \begin{cases} + & \text{for regulation up service} \\ - & \text{for regulation down service} \end{cases}$

RTM-related notation (units):

$\nu_{h,k}$: RTM regulation capacity for subperiod τ_k in hour h (MW)

$\chi_{h,k}$: RTM regulation capacity price for the subperiod τ_k in hour h ($/\text{MW}/h$)
\(\varphi_{h, \tau_k} \) : RTM regulation mileage price for the subperiod \(\tau_k \) in hour \(h \) ($/MW)

\(\alpha_{h, \tau_k} \) : a pre-specified lower bound of s.o.c. at the end of subperiod \(\tau_k \) in hour \(h \) (MWh)

\(\bar{\alpha}_{h, \tau_k} \) : a pre-specified upper bound of s.o.c. at the end of subperiod \(\tau_k \) in hour \(h \) (MWh)

\(s_{h, \tau_k} \) : value of s.o.c. at the end of subperiod \(\tau_k \) in hour \(h \) (MWh)

DAM-related notation:

\(\kappa^\dagger_h \) : DAM regulation capacity in hour \(h \) (MW)

\(\rho^\dagger_h \) : DAM regulation capacity price in hour \(h \) ($/MW/h)

\(\mu_h \) : DAM regulation mileage price in hour \(h \) ($/MW)

\(\underline{e}_h \) : a pre-specified lower bound of state of charge (s.o.c.) at the end of hour \(h \) (MWh)

\(\overline{e}_h \) : a pre-specified upper bound of s.o.c. at the end of hour \(h \) (MWh)

\(\epsilon_h \) : value of s.o.c. at the end of hour \(h \) (MWh)

Physical operations under the AGC-related notation:

\(p^{M,\dagger}_{h} \) : regulation resource maximum capacity output (MW)

\(p^{m,\dagger}_{h} \) : regulation minimum capacity offer (MW)

\(c_{h, \tau_k}[\sigma_{\tau_n}] \) : regulation resource output in interval \(\sigma_{\tau_n} \) of subperiod \(\tau_k \) of hour \(h \) (MW)

\(E^M \) : energy charge upper physical limit (MWh)

\(E^m \) : energy charge lower physical limit (MWh)

\(\epsilon_{h, \tau_k}[\sigma_{\tau_n}] \) : value of energy charge level at the end of interval \(\sigma_{\tau_n} \) of subperiod \(\tau_k \) in hour \(h \)

\(r^M \) : maximal ramping rate (MW/min)
APPENDIX B

THE PROCEDURE TO CALCULATE THE PAYMENT FOR FES REGULATION SERVICE PROVISION

We devote this appendix to describe the procedure the IGO is mandated to implement in order to calculate the regulation unit’s revenues from participating on regulation DAMs and RTMs.

Compensation to unit providing frequency regulation service is based on regulation clearing prices, the unit’s actual performance in response to AGC signal and contractual obligations for frequency regulation provision on the DAMs and RTMs.

The total payment includes following components:

(i) Cleared capacity payments for the DAMs and RTMs
(ii) Mileage payments for the DAMs and RTMs
(iii) Payments or charges for the net energy the unit injects into or withdrawals from the system while following the AGC signal

FERC Order No. 755 establishes the following procedure to calculate every component of compensation:

1. The payment for capacity of the delivered frequency regulation service is compensation to the FES for the capacity range which the unit made available to operate under AGC. This payment depends on the number of AGC intervals, when the unit was responsive to the AGC signal. Note, that FES is not able to respond to the AGC signal if the unit hits its upper or lower stored energy limit. The total payment for capacity of the delivered frequency regulation service consists of two parts. The first one is based on the DAM clearing price, and the
second is based on the RTM clearing price, as illustrated in Figure B.1. Let us first consider the RTM component.

At any subperiod \(\tau_{k} \), we need to know how many AGC intervals the FES was not able to respond to AGC signal due to the low charge level. We define an indicator function \(i_{h,\tau_{k}}^{+}[\sigma_{n}] \) by

\[
i_{h,\tau_{k}}^{+}[\sigma_{n}] = \begin{cases} 1 & \text{if } \epsilon_{h,\tau_{k}}[\sigma_{n}] = E^{m} \\ 0 & \text{otherwise} \end{cases}
\]

Similarly, we define a function \(i_{h,\tau_{k}}^{-}[\sigma_{n}] \) to indicate the AGC intervals when FES was not able to respond to AGC signal due to hitting the upper level of stored energy:

\[
i_{h,\tau_{k}}^{-}[\sigma_{n}] = \begin{cases} 1 & \text{if } \epsilon_{h,\tau_{k}}[\sigma_{n}] = E^{M} \\ 0 & \text{otherwise} \end{cases}
\]

Then, the payment \(\eta_{h} \) for capacity of the delivered frequency regulation service for \(KRTM \)s in hour \(h \) can be defined as:

\[
\eta_{h} = \sum_{k=1}^{K} \nu_{h,\tau_{k}}^{+} \chi_{h,\tau_{k}}^{+} \left[1 - \frac{\sum_{n=1}^{N} i_{h,\tau_{k}}^{+}[\sigma_{n}]}{N} \right] + \nu_{h,\tau_{k}}^{-} \chi_{h,\tau_{k}}^{-} \left[1 - \frac{\sum_{n=1}^{N} i_{h,\tau_{k}}^{-}[\sigma_{n}]}{N} \right]
\]

Similarly, the payment \(\pi_{h} \) for capacity of the delivered frequency regulation service for \(DAM \) obligations fulfillment in hour \(h \) can be defined as:

\[
\pi_{h} = \kappa_{h}^{+} \rho_{h}^{+} \left[1 - \frac{\sum_{k=1}^{K} \sum_{n=1}^{N} i_{h,\tau_{k}}^{+}[\sigma_{n}]}{NK} \right] + \kappa_{h}^{-} \rho_{h}^{-} \left[1 - \frac{\sum_{k=1}^{K} \sum_{n=1}^{N} i_{h,\tau_{k}}^{-}[\sigma_{n}]}{NK} \right]
\]

As a result, the total payment for capacity of the delivered frequency regulation service for a day \(d \) includes the payments which come from the contractual obligation to provide regulation service on hourly \(DAMs \) and associated \(RTMs \) and is given as
\[
\gamma = \sum_{h=1}^{H} (\eta_h + \pi_h)
\]

Figure B.1: Capacity payment based on the RTM and the DAM clearing outcomes

2. Under the FERC Order No. 755, every regulation unit must be compensated for the actual change in output between two consecutive AGC signal responses. The FERC Order No. 755 also refers to this component as a mileage payment. Since FERC does not provide exact guidance on how to calculate mileage payments, every IGO has established its own mileage compensation scheme. Reference [39] provides the detailed analysis of the IGOs policies and in this thesis we use the more general approach presented in [43].

The mileage payment is based on absolute change of the unit’s output \(c_{h,t} [\sigma_n] \) between two consecutive \(\sigma \) intervals as depicted in Figure B.2. In other words, this payment compensates the regulation unit for actual capacity movements in response to the AGC signal instruction. So, if the unit participates only on DAM or RTM, then the mileage compensation is paid at the DAM or RTM clearing price. For general cases, when the unit is cleared both on DAM
and RTM for the frequency regulation provision, mileage payment consists of two components paid at the DAM and RTM clearing prices, respectively. Specifically, all the capacity movements which are between DAM up κ_h^+ and down κ_h^- cleared capacities are compensated based on DAM clearing price μ_h:

$$\mathcal{G}_h = \mu_h \sum_{k=1}^{K} \sum_{n=1}^{N} \left(\max \left\{ 0, \ k_h^+ - c_{h.r_k} \left[\sigma_n \right] \right\} - \max \left\{ 0, \ k_h^+ - c_{h.r_k} \left[\sigma_{n+1} \right] \right\} - \max \left\{ 0, \ -k_h^- - c_{h.r_k} \left[\sigma_n \right] \right\} - \max \left\{ 0, \ -k_h^- - c_{h.r_k} \left[\sigma_{n+1} \right] \right\} \right)$$

Additionally, all movements above k_h^+ and below k_h^- are considered as RTM mileage and are paid at the RTM mileage clearing price $\phi_{h.r_k}$:

$$\phi_h = \sum_{k=1}^{K} \phi_{h.r_k} \sum_{n=1}^{N} \left(c_{h.r_k} \left[\sigma_n \right] - c_{h.r_k} \left[\sigma_{n+1} \right] \right) \left(\max \left\{ 0, \ k_h^+ - c_{h.r_k} \left[\sigma_n \right] \right\} - \max \left\{ 0, \ k_h^+ - c_{h.r_k} \left[\sigma_{n+1} \right] \right\} - \max \left\{ 0, \ -k_h^- - c_{h.r_k} \left[\sigma_n \right] \right\} - \max \left\{ 0, \ -k_h^- - c_{h.r_k} \left[\sigma_{n+1} \right] \right\} \right)$$

Figure B.2: Mileage payment calculation
The total mileage payment for a day \(d \) is presented as follows:

\[
\psi = \sum_{h=1}^{H} \left(g_h + \phi_h \right)
\]

3. In Order No. 755 the FERC mandated all IGOs to compensate or charge resources providing frequency regulation service for the net energy injected or withdrawn while following AGC signal commands. It is important to note that IGOs policies have different energy compensation schemes. For example, CAISO and PJM pay or charge the net energy at the real-time LMP only. As a justification of their approach, they claim that their revenues come mostly from payments for regulation provision, but not from energy arbitrage. In this thesis we have adopted a more general compensation scheme. In particular, the FES is paid or charged for the net energy injected or withdrawn at the hourly LMP if the resource’s output is between DAM up \(\kappa_h^+ \) and down \(\kappa_h^- \) cleared capacities. On the other hand, if the resource’s output is above \(\kappa_h^- \) or below \(\kappa_h^+ \), then the energy generated or consumed is considered as an RTM transaction and is compensated or charged at the real-time LMP as designated by right-directed hatching under the AGC signal on Figure B.3.

In order to distinguish between these two cases, we use an approach similar to the one we have used for mileage calculation. Hence, the energy payment or charges in hour \(h \) can be defined as

\[
\phi_h = \hat{\lambda}_h \sum_{k=1}^{K} \sum_{n=1}^{N} \frac{\min \left\{ \max \left\{ 0, c_{h,r_k} \left[\sigma_n \right] \right\}, \kappa_h^+ \right\} - \max \left\{ \min \left\{ 0, c_{h,r_k} \left[\sigma_n \right] \right\}, \kappa_h^- \right\}}{NK} +
\sum_{k=1}^{K} \zeta_{h,r_k} \sum_{n=1}^{N} \frac{\max \left\{ \max \left\{ 0, c_{h,r_k} \left[\sigma_n \right] \right\}, \kappa_h^+ \right\} - \min \left\{ \min \left\{ 0, c_{h,r_k} \left[\sigma_n \right] \right\}, \kappa_h^- \right\} - 2\kappa_h^+}{NK}
\]

where \(\hat{\lambda}_h \) is an hourly LMP in hour \(h \) at the bus, connected to FES, \(\zeta_{h,r_k} \) is a real-time LMP at subperiod \(\tau_k \) in hour \(h \) at the same bus.
Figure B.3: Net energy payment
APPENDIX C
OVERVIEW OF THE SIMULATION APPROACH

The overview of market simulation algorithm for day \(d \) is shown on Figure C.1.

For each day \(d \) in the simulation period, we first determine the regulation DAM offers which have resulted from solving the optimization problem \(\mathcal{M}(\mathcal{H}^i), \forall \mathcal{H}^i \in \mathcal{H} \). This DAM schedule information is the input to the real-time offer problem \(\mathcal{R}_{h \in \mathcal{H}}(\tau_k) \). The outcome of the RTM offer problem \(\mathcal{R}_{h \in \mathcal{H}}(\tau_k) \) consists of the capacity offers in up and down directions for real-time subperiod \(\tau_k \). Assuming FES price-taking behavior in DAM and RTM, all real-time and day-ahead regulation offers are cleared as submitted. Hence, the market clearing results define the contribution of total AGC service which the regulation unit is obligated to provide [44]. Therefore, the AGC curve is normalized based on combined DAM and RTM capacity rewards. The simulated AGC signal determines the unit’s stored energy at the end of subperiod \(\tau_k \) which is the same as the energy at the beginning of subperiod \(\tau_{k+1} \). The process is repeated for each real-time subperiod \(\tau_k \in h \) and for every hour \(\forall h \in \mathcal{H} \). From day \(d \) day-ahead and real-time offers, regulation unit’s actual performance, and regulation service clearing prices we calculate the FES capacity, mileage and energy payments using the settlement scheme presented in Appendix B. These figures form the basis of an economic assessment and comparative analysis of DAM and RTM offer strategies.
Figure C.1: Day-ahead and real-time offer strategies simulation algorithm
REFERENCES

